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Abstract

A variety of studies suggests that tumor suppressor loci on chromosome
3p are important in various forms of human neoplasia. Recently, a chro
mosome 3pl4.2 gene called FHIT was discovered and proposed as a
candidate tumor suppressor gene in colorÃ©ela!and other cancers. We
evaluated the FHIT gene in a panel of colorectal cancer cell lines and
xenografts, which allowed a comprehensive mutational analysis. A tran
script containing the complete coding sequence was found to be expressed
at robust levels in 29 of 31 cancers tested. The complete sequence of the
coding region of the gene was determined and found to be normal in all 29
of these cases. These studies suggest either that / /// / is inactivated by an
unusual mechanism or that it plays a role in relatively few colorectal
tumors.

Introduction

A variety of studies have suggested that tumor suppressor loci on
chromosome 3p play important roles in human neoplasia. Although
several genes have been proposed to represent these suppressors, only
in the case of the VHL gene at chromosome 3p25 has unequivocal
evidence implicating a specific gene been amassed (1). The identifi
cation of the VHL gene was facilitated considerably by the availability
of cancer-prone families in which genetic linkage data and germline

mutations could be used as aids to gene discovery and validation. The
other loci on chromosome 3p are generally not associated with cancer
predisposition, and the search for these genes, and their validation as
tumor suppressors, is accordingly more difficult.

Among the chromosome 3 regions thought to harbor tumor sup
pressor loci, chromosome 3pl4.2 has recently become prominent.
Several different lines of investigation led to the consideration of this
region. A reciprocal t(3;8)(pl4.2;q24) chromosome translocation seg
regating with disease in a family with renal cell carcinomas first
highlighted this chromosomal position (2, 3). Subsequently, an aphidi-
colin-inducible fragile site, FRA3B, was found to be indistinguishable

from the t(3;8) translocation (4). Numerous studies have demonstrated
that chromosome 3p allelic losses occur in many forms of cancers,
although the losses appear to implicate several loci rather than point
to a single common region of loss (5-11). Additionally, RDA3 was

used to map a relatively frequent site of homozygous deletion in
colorectal cancers to 3pl4.2 (12). As homozygously deleted se
quences are believed generally to lie within or adjacent to tumor
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suppressor genes (13), the RDA results strongly supported the exist
ence of a tumor suppressor gene in this area (14).

Finally, Ohta et al. (15) have recently used a positional cloning
approach to identify a novel gene that spanned the t(3;8) breakpoint.
They named this gene FHIT (fragile histidine triad gene), reflecting its
homology to the Schizosaccharomyces pombe gene encoding Ap4A
asymmetrical hydrolase (16). In addition to its disruption in the
kindred with the t(3;8) translocation, the authors identified aberrant
transcripts of the gene in many cancers, including those of the colon,
esophagus, stomach, and lung (15, 17). FHIT was, therefore proposed
as a candidate tumor suppressor gene. In the current study, we have
used a molecular genetic approach to determine the frequency and
extent of alterations of this gene in a panel of colorectal cancer lines
particularly well suited for such analyses (37).

Materials and Methods

The generation and maintenance of early-passage xenografts and cell lines

derived from colorectal cancers has been described previously (18, 19). Xe
nografts were used at first passage, and cell lines were used prior to the sixth
in vitro passage.

RNA was purified from tumor lines and normal tissues, and cDNA was
generated from RNA as described previously (20-22). Each cDNA synthesis

reaction was paired with a parallel reaction without reverse transcriptase as a
control. PCR amplifications were carried out in 96-well plates in 25-/nl
reaction mixtures containing 6.7 min Tris-HCl (pH 8.8); 16.6 mM ammonium
sulfate; 67 mM magnesium chloride; 10 mM ÃŸ-mercaptoethanol; 6% DMSO.

300 UM each of dATP, dGTP, dCTP, and dTTP; and 175 ng of each primer.
An initial denaturation at 95Â°Cfor 90 s was followed by 35 cycles of 95Â°Cfor
30 s, 62Â°Cfor 60 s, and 70Â°Cfor 60 s. Procedures for sequencing of PCR

products have been described previously (20-22).

The primers used for amplification of markers on chromosome 3pl4 are
described in Kastury et al. (11) and Lisitsyn et al. (12). The primers used for
RT-PCR analysis of the FHIT gene were 5'-CAT GTC GTT CAG ATT TGG
CCA ACA TCT C-3' (FP1) and 5'-ACA GGA TGG TGA GAT GAA GAA
ACT GC-3 ' (RP2) for exons 5-10, and 5-'CTG TAA AGO TCC GTA GTG
C-3' (MUR5) and RP2 for exons 3-10. These products were sequenced
directly using the primers 5'-GAG GAC TCC GAA GAG GTA GC-3' (SP1),
5'-TCG GCC ACT TCA TCA GGA CG-3' (RSP1), 5'-CAG GAC ATG TCC
TTG TGT GC-3' (SP2), and 5'-CGG ACA GAC TGT GAA GCA CG-3'

(SP3) and SequiTherm polymerase (Epicentre, Madison, WI). These primers
allowed determination of sequences encompassing the entire open reading
frame. For verification of the integrity of the RNA samples, control RT-PCR

amplifications using primers specific for genes on chromosome 18 were
performed (37).

Results and Discussion

Many of the problems limiting unambiguous interpretation of the
genetic analyses of tumors stem from contaminating nonneoplastic
cells. DNA from such cells can complicate the interpretation of allelic
losses, and RNA from such cells can mask the presence of tumor-

specific altered transcripts. These problems can be avoided through
the analysis of early-passage cell lines derived from colorectal can-
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cers. The genetic profiles of such lines has been shown to be very
similar to those of the primary tumors from which the lines were
derived (23-25, 37).

Thirty-one such early-passage lines (20 passaged as xenografts and
11 passaged in vitro, each from a different patient) were chosen for
analysis. These cases included all lines established in our laboratories
in which high-quality RNA and DNA, as well as corresponding
normal tissues from the same patients, were available, and in which
the microsatellite instability (26-28) characteristic of mismatch repair
deficiency (29) was not observed; such instability makes it difficult to
interpret genetic analyses (27).

The tumors were first studied at the genomic level using five
microsatellite markers. Two of these markers (D3S1300 and
D3S1481) were located within the FHIT gene, and three (D3S1234,
D3S1295 and D3S1313) were slightly telomeric (11, 15). The normal
tissues of all 31 samples were heterozygous with at least two of these
markers, and allelic losses were observed in 7 of the tumors (22%;
examples in Fig. 1).

To search for homozygous deletions, i.e., cases in which both
parental alÃeleswere lost from the tumor, we examined the same five
microsatellite markers, three nonpolymorphic markers delineated with
RDA (12, 14) and shown subsequently to lie within intron 5 of FHIT
(15), and exons 3 and 5 of FHIT. Only one of the 31 cases exhibited
a homozygous deletion of any of these sequences. This case was one
of the seven tumors with an allelic loss of surrounding 3p sequences,
and the homozygous deletion included two RDA markers from within
FHIT but did not include exons 5-10 of the gene (see below).

Tumor suppressor genes can be inactivated in two ways (13): (a)
expression can be eliminated or reduced substantially by mutations in
regulatory sequences; (b) the protein encoded by the gene can be
altered qualitatively by missense or nonsense mutations. To determine
whether FHIT expression was altered substantially, we amplified
exons 5-10 of the FHIT gene from tumor cDNA. These exons were
chosen for analysis because they contained the entire open reading
frame of the FHIT gene and because all previously documented
alterations of FHIT involved at least one of these five exons.

To perform the new analyses, we designed primers that allowed
robust, single-stage amplification and did not coamplify murine tran-

_1 2 3 4 5 6_
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Fig. 1. Allelic losses of the FHIT locus. Primers specific for the microsatellite marker
D3S1300 were used to amplify genomic DNA from early-passage colorectal cancer cell
lines and normal colon of the same patients. Each normal (N) tumor (T) pair is derived
from a different patient. Pairs 1 (CoSO). 3 (Co79). 6 (Co84). 7 (Mx8), 8 (Mx9), 9 (MxlO).
10 (Mxl 1). and 12 (Mxl3) retained heterozygosityi pairs 4 (Co80) and 5 (Co82) lost one
alÃele;and pairs 2 (Co74) and 11 (Mxl2) were uninformative (i.e., the normal cells of the
patients were not heterozygous for the marker).

scripts that might complicate the analysis of the xenografts. FHIT-
specific products of full-length size were observed readily in 29 of the
31 cases (examples in Fig. 2). In each of these 29 cases, a single,
major RT-PCR product was observed. Faint bands of larger or smaller
size, presumably representing alternatively spliced transcripts, were
seen occasionally, but these were no more prominent in the tumor
samples than in normal colon or brain (Fig. 2, Lanes C and B). In 2
of the 31 cases, no RT-PCR products at all could be generated; the
integrity of the RNA and cDNA in these samples was tested as
described in "Materials and Methods." A single, major RT-PCR

product was observed in the case with the homozygous deletion
within FHIT noted above as well as in the other six cases with allelic
losses (examples in Fig. 2A, pairs 3, 4, and 6).

To determine whether subtle alterations in the coding sequence of
FHIT existed within these transcripts, we determined the sequence of
the RT-PCR products as described in "Materials and Methods." Only

three sequence variants were detected, and these were likely to rep
resent polymorphisms, as each was silent. Two involved G to A
transitions at codon 183 (threonine), and one involved C to T transi
tions at codon 294 (histidine).

We also used primers very similar to those used by Onta et al. (15)
for analysis of the same samples. The results confirmed those noted
above, and a single, major RT-PCR product containing exons 3-10
was observed in 27 of the 31 cancers (examples in Fig. 2ÃŸ).In two
cases, no RT-PCR product was observed (the same two cases showing
no amplification with the exon 5-10 primer set). In two other cases,
a smaller product was observed in addition to the product of normal
size (data not shown).

Some of the results obtained in the studies described above are in
apparent conflict with data published previously. Two improvements
in the approach used to evaluate FHIT in this study may be respon
sible for these differences, (a) The availability of early-passage lines
made it possible to exclude contamination of the samples with nucleic
acids derived from nonneoplastic cells of primary tumors, such as
those used in the previous studies (11, 15). In such primary tumors, it
is often difficult to distinguish true allelic loss from allelic imbalance
(i.e., two or more copies of one alÃele,and one copy of the other),
which can lead to errors in estimating the proportion of tumors with
such losses. In early-passage lines, such losses are unambiguous (see
Fig. 1) and correlate highly with those observed in microdissected
primary tumors (23-25). This might explain the lower prevalence of
allelic loss observed in our study [7 of 31 (22%)] compared to that of
Kasturyffa/. [15 of 32 (47%); Ref. 11], although differences in tumor
stage or simple statistical variation might also account for this dis
crepancy, (b) Our PCR conditions were apparently more robust than
those of Ohta et al. (15), who used a nested PCR strategy (15). These
authors described two types of altered transcripts. Although the exons
that were lost varied from tumor to tumor, the missing exons in "class
I" transcripts always included exon 5, and those in "class II" tran

scripts always included exon 8 (15). We found little evidence for
either of these classes of transcripts. In our experience, nested PCR
can result in overrepresentation of shorter, alternatively spliced tran
scripts in addition to or instead of the normal product. In fact, Ohta et
al. (15) observed full-length RT-PCR products in most of the cases in
which aberrant products were observed but suggested that some of
these normal products might have emanated from contaminating
nonneoplastic cells. Our studies show clearly that these normal prod
ucts are actually derived from neoplastic cells, and furthermore, that
these were the major products in normal colon as well as in nearly all
of the 31 colorectal cancers examined. It is also important that we did
not observe any point mutations or other subtle changes of the type
that occur characteristically in tumor suppressor genes (13). Finally, it
is possible that the differences in the extent of aberrant transcripts
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Fig. 2. RT-PCR analysis of the FHIT transcript. RT-PCR analysis was performed as described in "Materials and Methods," using RNA from the colorÃ©ela]cancer cell lines as

templates and primers allowing amplification of exons 5-10 (A) or exons 3-10 (B). Lanes marked + and â€”¿�correspond to RT reactions performed with and without reverse transcriptase,
respectively. RNA from different colorectal cancers (Co48. Co50. Co79, Co82. Co89. Co90. Mx3, Mx5. Mx7, Mx9. MX10. MX12. MX15. and MX16) were the templates for pairs 1-14.
respectively, while RNA from normal colon or normal brain was used in Lanes C and B. respectively. The migration of molecular weight markers is indicated in kb in the left margin.

observed in the two studies simply reflect statistical variation. Al
though Ohta et al. (15) and Sozzi et al. (17) concluded that FHIT was
expressed aberrantly in more than half the tumors of several different
types that they examined, their data on colorectal tumors was limited
to eight cases, three of which appeared to exhibit truncated RT-PCR

products (15, 17).
In 29 of the 31 cases examined in this study, a normal-sized

RT-PCR product, containing the complete coding region of FHIT.

was observed. In 27 of these 29 cases, the only major PCR product
was that corresponding to the normal, whereas in 2 of the 29 cases, a
smaller PCR product was observed in addition to the normal product.
Even assuming that the absence of a normal product (two cases) or the
additional presence of a smaller product (two cases) is functionally
important, the maximal involvement of FHIT was confined to the 4 of
31 tumors (13%) in which any abnormality was observed. In these
four cases, however, it is possible that FHIT was not the only gene in
the region that was altered. Likewise, the homology of FHIT to Ap4A
hydrolase does not provide any obvious clues as to how the type of
aberrances noted would lead to tumor initiation or progression. Fi
nally, although the examination of early-passage colorectal cancers

could conceivably overestimate the proportion of tumors exhibiting
alterations of a given gene, such a panel is extremely unlikely to
underestimate this proportion.

Several interpretations of these data are therefore possible, (a)
The FHIT gene is not involved causally in any colorectal tumor
and is simply located adjacent to or surrounding another gene (the
true "target") that drives a clonal selection process. Genes within

genes have been previously demonstrated to exist, including those that
affect tumor suppressor loci (30-34). (b) FHlTit, indeed a true target, but
its role is limited to the small number of colorectal tumors (â€”13%)that
exhibit altered transcripts, (c) FHIT'is functionally altered in more tumors

than are apparent in our studies, but such alterations affect the extent of
its translation rather than its coding sequence. This possibility could not
be addressed fully in our studies, but can be analyzed in the future
through examination of the FHIT protein, (d) The losses of genetic
material in this region are not related to tumorigenesis at all, and reflect
simply the plasticity of the cancer cell genome. Notable in this regard is
the inducible fragile site, FRA3B, which lies within FHIT and could make
this region particularly susceptible to some form of cancer-specific ge

netic instability (35, 36). Additional evaluations of tumors and normal
tissues, as well as complete sequencing of the chromosomal region
containing FHIT. should clarify these issues in the future.
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