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Two major paradigms are currently used for detecting indels. 
The first and most common approach is to map all of the input 
reads to the reference genome using a read mapper (such as 
Burrows-Wheeler Alignment tool (BWA), Bowtie or Novoalign), 
although the available algorithms are not as effective for mapping 
across indels of more than a few base pairs. Advanced approaches 
use paired-end information to perform local realignments to 
detect longer mutations (tools include GATK UnifiedGenotyper1 
and Dindel9), although, in practice, their sensitivity is greatly 
reduced for longer (≥30 bp) variants. Split-read methods (such 
as Pindel10 and Splitread11) can theoretically find deletions of any 
size, but they have limited power to detect insertions owing to the 
short read length of current sequencing technologies. The second 
paradigm consists of performing de novo whole-genome assembly 
of the reads and detecting variations between the assembled con-
tigs and the reference genome12,13. Although it has the potential 
to detect larger mutations, in practice this paradigm is less sensi-
tive because detecting indels requires a fine-grained and localized 
analysis to correctly report homozygous and heterozygous muta-
tions. Recently, three approaches have been developed that use  
de novo assembly for variation discovery: GATK HaplotypeCaller, 
SOAPindel14 and Cortex15. Another recent approach, TIGRA16, 
also uses localized assembly, but it has been tailored for break-
point detection without reporting the indel sequence.

We present a DNA sequence microassembly pipeline, Scalpel, 
for detecting indels within exome-capture data (Fig. 1). By com-
bining the power of mapping and assembly, Scalpel carefully 
searches the de Bruijn graph for sequence paths (contigs) that 
span each exon. The algorithm includes an on-the-fly repeat 
composition analysis of each exon coupled with a self-tuning  
k-mer strategy.

Using simulated reads, we confirmed previous findings that nine 
standard algorithms have reduced power to detect large (≥30 bp)  
indels14,15: Scalpel, SOAPindel14, GATK-HaplotypeCaller, 
GATK-UnifiedGenotyper, SAMtools17, FreeBayes18, Platypus 
(http://www.well.ox.ac.uk/platypus), lobSTR19 and RepeatSeq20 
(Supplementary Notes 1 and 2, Supplementary Figs. 1 and 2 
and Supplementary Tables 1–5). We also performed a large-scale 
validation experiment involving ~1,000 indels from one single 
exome. The individual has a severe case of Tourette syndrome 
and obsessive-compulsive disorder (sample ID: K8101-49685); 
the exome was sequenced to ≥20× coverage over 80% of the 
exome target using the Agilent 44-Mb SureSelect capture proto-
col and Illumina HiSeq2000 paired-end reads, averaging 90 bp 
in length after trimming. Indels were called using the three pipe-
lines that had performed best with our simulated reads: Scalpel 
v.0.1.1 beta, SOAPindel v.2.0.1 and GATK HaplotypeCaller v.2.4.3  
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We present an open-source algorithm, Scalpel (http://scalpel.
sourceforge.net/), which combines mapping and assembly for 
sensitive and specific discovery of insertions and deletions 
(indels) in exome-capture data. A detailed repeat analysis 
coupled with a self-tuning k-mer strategy allows Scalpel 
to outperform other state-of-the-art approaches for indel 
discovery, particularly in regions containing near-perfect 
repeats. We analyzed 593 families from the Simons Simplex 
Collection and demonstrated Scalpel’s power to detect long 
(≥30 bp) transmitted events and enrichment for de novo likely 
gene-disrupting indels in autistic children.

Although the analysis of single-nucleotide variations (SNVs) has 
become a standard technique to study human genetics1, indels in 
DNA sequences cannot be detected as reliably2,3. Indels are the second 
most common source of variation in human genomes and the most 
common structural variant4. Within microsatellites (simple sequence 
repeats, SSRs, of 1- to 6-bp motifs), indels alter the length of the repeat 
motif and have been linked to more than 40 neurological diseases5. 
Indels also are an important genetic component in autism: de novo 
indels that are likely to disrupt the encoded protein are nearly twice as 
abundant in affected children than in their unaffected siblings6.

Detecting indels is challenging for several reasons: (i) reads 
overlapping the indel sequence are more difficult to map7 and 
may be aligned with multiple mismatches rather than with a gap; 
(ii) irregularity in capture efficiency and nonuniform read distri-
bution increase the number of false positives; (iii) increased error 
rates make indel detection very difficult within microsatellites; 
and, as shown in this study, (iv) localized near-identical repetitive 
sequences can create high rates of false positives. For these rea-
sons, the size of indels detectable by available software tools has 
been relatively small, rarely more than a few dozen base pairs8.
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(Online Methods). Interestingly, there was only ~37% concord-
ance among calls made by all of the pipelines, and each method 
reported hundreds of indels unique to that pipeline (Fig. 2a), 
which is in close agreement with a recent analysis2. An update 
for GATK to v.3.0 was released after our initial validation experi-
ments, but we also assessed its accuracy with a second blinded 
resequencing experiment (Fig. 2b, Supplementary Note 3, 
Supplementary Fig. 3 and Supplementary Tables 6 and 7).

From the concordance rate alone, it is hard to judge the qual-
ity of indels unique to each pipeline, as these could represent 
either superior sensitivity or poor specificity. The size distribu-
tion of indels called by the HaplotypeCaller (v.2.4.3) had a bias 
toward deletions, whereas SOAPindel had a bias toward insertions  
(Fig. 2b). Scalpel and HaplotypeCaller (v.3.0) instead showed 
a well-balanced distribution in agreement with other studies of 
human indel mutations8.

We further investigated the performance of the algorithms by 
a focused resequencing of a representative sample of indels using 
the more recent 250-bp Illumina MiSeq 
sequencing protocol (Online Methods). On 
the basis of the data depicted in Figure 2a,  
we selected a total of 1,000 indels accord-
ing to the following categories: 200 ran-
dom indels from the intersection of all 
pipelines, 200 random indels specific to 
the respective pipelines, and 200 random 
indels of size ≥30 bp from the union of all 
indels detected by the three algorithms.

To avoid possibly ambiguous represen-
tation, we ‘left normalized’2 indel posi-
tions. However, some ambiguity can still 
remain, especially within microsatellites, 
so we computed validation rates using 
two different approaches. These were  
(i) position based, in which an indel is 
considered valid if a mutation with the 

same coordinate exists in the validation data (Fig. 3a), and  
(ii) exact match, in which an indel is considered valid if there is a 
mutation with the same coordinate and sequence in the validation 
data (Fig. 3b and Supplementary Data 1).

As expected, indels detected by all pipelines had a high vali-
dation rate, and their sizes followed a log-normal distribution 
(Supplementary Fig. 4). However, the validation rate varied dra-
matically for each tool. Respectively, only 22% and 55% of the 
HaplotypeCaller (v.2.4.3)- and SOAPindel-specific indels could 
be validated even when the less strict position-based approach 
was used, whereas 77% of Scalpel-specific indels were true posi-
tive. For the long indels: less than 10% called by SOAPindel and 
HaplotypeCaller passed validation (Fig. 3c and Supplementary 
Table 8). The new version of GATK (v.3.0) has largely removed 
the bias toward deletions (Fig. 2b), but Scalpel still outperformed 
HaplotypeCaller (Supplementary Note 3). Scalpel showed a sub-
stantially higher validation rate (76%) for longer indels (>5 bp) 
than HaplotypeCaller v.3.0 (27%).

We further divided the results to separately report the vali-
dation rate for indels within microsatellites. SOAPindel showed 
an appreciably higher rate of false positives within microsatel-
lites (Fig. 3a,b). When microsatellites were excluded, the per-
formance of SOAPindel and HaplotypeCaller declined, whereas 
Scalpel’s validation rate was only slightly reduced (Fig. 3a,b). The 
relative abundance of indels within microsatellites called by each 
tool is also shown (Fig. 3a,b); HaplotypeCaller seemed to filter 
against these. Finally, when we switched from the position-based 
approach to the exact-match approach, there was a notable reduc-
tion in the validation rate for indels within microsatellites. This 
phenomenon is due to their high instability and higher error rates, 
and in fact it is not unusual to have more than one candidate 
mutation at a microsatellite locus.

We further inspected the sequence composition of all false posi-
tive long indels. Specifically, we reanalyzed the 129 SOAPindel 
invalid long mutations using Scalpel. The majority of these muta-
tions (115) overlapped repeat structures where the reference con-
tained a perfect or near-perfect repeat (Supplementary Fig. 5). In 
contrast, of the 62 false positive long indels from HaplotypeCaller, 
only 16 overlapped a repeat. The remaining false positive deletions 
appear to be due to an aggressive approach used by the algorithm 
when processing soft-clipped reads (in which bases are ‘trimmed’ 

Mark source and sink

If cycle or
near-perfect
repeat in any

path

Remove low coverage
nodes and dead ends;

compress

Build de Bruijn graph

Extract reads

Traverse graph and
enumerate haplotype

paths

Align to reference

Yes

No

K
 =

 K
 +

 1

Deletion Insertion

Sink

Sink

Source

Source

Reference

Figure 1 | Overview of the Scalpel algorithm workflow. Extracted reads 
include well-mapped reads, soft-clipped reads, and reads that fail to map 
but are anchored by their mate. The assembled sequences are aligned to a 
reference using the standard Smith-Waterman-Gotoh alignment algorithm 
with affine-gap penalties.
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Figure 2 | Concordance of indels between pipelines. (a) Venn diagram showing the percentage of 
indels shared among the three pipelines. (b) Size distribution for indels called by each pipeline. 
1,000 indels from five categories were analyzed by focused resequencing.
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at the end of the read to optimize their 
alignment score). The soft-clipped reads 
in false positive indels for HaplotypeCaller 
were highly variable and are conjectured 
to be mapping artifacts of reads from dif-
ferent genomic locations (Supplementary 
Fig. 6). Finally, we investigated the rela-
tionship between the false discovery rate 
and characteristic features (for example, χ2 
score and coverage) for 614 indels detected 
by Scalpel and validated by resequencing 
(Supplementary Note 4 and Supplementary Figs. 7 and 8).  
In addition to highlighting the common trends, this analysis 
provides recommendation on how to select a χ2 score cutoff to 
achieve a given false discovery rate.

Using Scalpel we detected a total of 3.3 million indels in exomes 
from 593 families from the Simons Simplex Collection (SSC), 
corresponding to an average of ~1,400 (= 3,388,139/(4 × 593)) 
mutations per individual. Accounting for population frequencies, 
there were 27,795 distinct transmitted indels across the exomes. 
We found close agreement to the size distributions reported by 
Montgomery et al.8 using low-coverage whole-genome data from 
179 individuals (Supplementary Fig. 9a). Direct comparison to 
indels detected by the GATK-UnifiedGenotyper–based mapping 
pipeline used by Iossifov et al.6 showed that Scalpel has supe-
rior power to detect longer insertions (Supplementary Fig. 10).  
To estimate Scalpel’s ability to discover transmitted mutations, we 
performed targeted resequencing of 31 long (≥30 bp) transmit-
ted indels. Excluding indels that failed to sequence (4), 21 passed 
validation (out of 27), which gives a 78% true positive rate. Three 
of the indels that did not pass validation were indeterminate with 
ambiguous alignments because they were either too long (≥70 bp) 
or embedded in a repetitive region.

Within the coding sequence, frame-preserving indels were 
more abundant than frameshifts (Supplementary Fig. 9b). In 
agreement with MacArthur and Tyler-Smith21, we detected a large 
number of transmitted loss-of-function variants in protein-coding 
genes. Frameshift mutations were found at lower frequency in the 
population when located in protein-coding sequences compared 
to intronic regions (Supplementary Fig. 9c). Finally, we observed 
an enrichment of deletions over insertions (Supplementary  
Table 9 and Supplementary Fig. 11), with an overall 2:1 ratio 
across all annotation categories. Similar trends were reported in 
previous studies8,22.

We reanalyzed the data on autistic children and unaffected 
siblings6,23,24 with Scalpel with the goal of examining de novo 

likely gene-disrupting (LGD) mutations. We confirmed an over-
abundance of frameshift mutations in autistic patients6, pre-
dicted additional candidates and extended the analysis to a larger 
number of families. Our reanalysis of a previous study with 200 
SSC families23 reported an enrichment of 11 LGD indels in autis-
tic children compared to 4 in their healthy siblings. In targeted 
resequencing of 102 candidate indels, we confirmed 84 as de novo 
mutations, invalidated 11 and failed to sequence 7, giving an 82% 
de novo positive predictive rate.

In order to focus the list of candidate genes, we excluded muta-
tions that are common in the population and used stringent cov-
erage filters (Online Methods) to select a total of 97 high-quality 
de novo indels (Supplementary Data 2). Even after extending 
the population size from 343 (ref. 6) to 593, the same 2:1 enrich-
ment for LGD mutations was confirmed: 35 frameshifts in autistic 
children versus 16 in siblings (P = 0.01097, exact binomial test) 
(Supplementary Tables 10 and 11, Supplementary Note 5 and 
Supplementary Figs. 12–16); other smaller studies have come 
to similar conclusions23–25. This result also holds for a larger col-
lection of 1,303 SSC families (unpublished data, G.N. et al.). All 
together, in agreement with the previously reported results6, we 
found a notable overlap between the LGD target genes and the 842 
genes related to the protein FMRP26, whose mutation is associated 
with autism. Specifically, 8 out of 35 LGDs in autistic children 
overlapped with the 842 FMRP-associated genes.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequence Read Archive: SRX265476 (HiSeq 
data); SRX386284 (MiSeq data).

Note: Any Supplementary Information and Source Data files are available in the 

online version of the paper.
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ONLINE METHODS
The Scalpel pipeline. Scalpel is designed to perform localized 
microassembly of specific regions of interest in a genome with the 
goal of detecting insertions and deletions with high accuracy. It 
is based on the de Bruijn graph assembly paradigm, in which the 
reads are decomposed into overlapping k-mers and directed edges 
are added between k-mers that are consecutive within any read27. 
Figure 1 shows the high-level structure of the pipeline. (1) The 
pipeline begins with a fast alignment of the reads to the reference 
genome using BWA28,29. Importantly, these alignments are not 
directly used to call variations but only to localize the analysis 
by identifying all the reads that have similarity to a given locus. 
Reads are then extracted in the region of interest (for example, 
exon) including: (i) well-mapped reads, (ii) soft-clipped reads, 
and (iii) reads that fail to map but are anchored by their mate. 
The latter two classes correspond to locations where the map-
per encountered trouble aligning the reads, especially because of 
the large indels present, so it is necessary to include them in the 
assembly. (2) Once localized, the algorithm computes an on-the-
fly assembly of the reads in the current region using the de Bruijn 
graph paradigm: specifically, reads are decomposed into overlap-
ping k-mers (starting with a default k = 25), and the associated 
graph is constructed. (3) Using the reference sequence, one source 
node and one sink node are selected according to the procedure 
described later in the “Graph traversal” section. (4) An on-the-
fly analysis of the repeats in each region is used to automati-
cally select the k-mer size to be used for the assembly, described 
in section “Repeat analysis.” (5) The graph is then exhaus-
tively examined to find end-to-end paths that span the region.  
(6) After the sequences are assembled, they are aligned to the 
reference to detect candidate mutations using a sensitive gapped 
sequence aligner based on the Smith-Waterman algorithm30 tar-
geted at the reference window. Finally, the above assembly proc-
ess is applied using a sliding-window approach over each target 
region. By default a window size of 400 bp is used with a sliding 
factor of 100 bp. The sliding-window strategy is fundamental to 
handle the highly nonuniform read distribution across the target 
(Supplementary Fig. 17). A window size of 400 bp is large enough 
to assemble the majority of the exons into a single contig: ~95% of 
the human exon-targets are shorter than 400 bp (Supplementary 
Fig. 18); however, each assembly task is small enough for using 
in-depth techniques to optimize the assembly.

Graph construction. Two critical components of the Scalpel algo-
rithm are (i) construction of the de Bruijn graph and (ii) detection 
of sequence paths spanning the targeted region. Reads aligning to 
the region are extracted and decomposed into overlapping k-mers.  
In order to model the double-stranded nature of the DNA, a 
bidirected de Bruijn graph is constructed31,32. The graph is then 
compressed by merging all nonbranching chains of k-mers into 
a single node. Tips and low-coverage nodes are removed accord-
ing to input threshold parameters to remove obvious sequencing 
errors. Note that, differently from a traditional de Bruijn graph 
assembler, Scalpel does not use any threading strategy to resolve 
collapsed repeats. In principle, threading would allow resolu-
tion of repeats whose lengths are between k and the read length. 
However, we observed in both real and simulated data that, owing 
to the localized graph construction, if a bubble were not covered 
end to end by the reads, threading would either disconnect the 

graph or introduce errors. Repeats are instead handled differently, 
as explained in the next section.

Repeat analysis. Due to the highly nonuniform read-depth distri-
bution across the targeted region and the presence of near-perfect 
repeats that can mislead the assembly (Supplementary Note 6 
and Supplementary Fig. 19), Scalpel implements a detailed repeat 
composition analysis coupled with a self-tuning k-mer strategy. 
Specifically, when assembling a window, Scalpel inspects both the 
base-pair composition of the corresponding reference sequence 
and the resulting de Bruijn graph for the presence of cycles in 
the graph or near-perfect repeats in the assembled sequences. If 
a repeat structure is detected, the graph is discarded and a larger 
k-mer is selected. This process continues until a maximum k-mer 
length is reached, which is a function of the read length. If no 
k-mer value can be chosen to avoid the presence of repeats, the 
region is skipped and the next available region from the sliding 
window scheme is analyzed. This conservative strategy reduces 
the number of false positive calls in highly repetitive regions and 
skips less than 2% of possible windows in the human exome. Note 
also that, once k is selected by the self-tuning k-mer strategy, the 
graph is ‘repeat free’, and there is no need to use threading to 
resolve small repeats.

The proposed self-tuning k-mer strategy is similar to the 
dynamic approach used by SOAPindel and TIGRA to reconnect 
a broken path in low-coverage regions. However, SOAPindel 
searches for unused reads with gradually shorter k-mers until 
a path is formed or the lower bound on k-mer length has been 
reached; in TIGRA the user can specify the list of k-mers to use 
(by default only two: 15 and 25). Scalpel instead starts from a 
small k-mer value (input parameter) first and then gradually 
increases it such that the smallest possible k-mer value that gen-
erates a ‘repeat-free’ graph is used for each region. This strategy 
better handles repetitive sequences, highly polymorphic regions 
and sequencing errors: source and sink have a higher chance to be 
selected (see “Graph traversal”), and a smaller k-mer reduces the 
chance of fragmented assembly in low-coverage regions.

Graph traversal. Once a valid de Bruijn graph is constructed, 
Scalpel examines the graph to find end-to-end sequence paths 
that span the target window. Because the coverage from exome-
capture data are highly variable, a special selection algorithm is 
used to find the edges of each window where coverage is present. 
First, two nodes in the graph are labeled as ‘source’ and ‘sink’ 
according to the following procedure: the reference sequence of 
the target region is scanned left to right to detect the first sequence 
of k bases that exactly matches one of the k-mers from the nodes 
in the graph; this node will be marked as the source. In a simi-
lar fashion the sink node is detected by scanning the reference 
sequence right to left. Because every region is first inspected for 
repeats, source and sink can be safely selected at this stage. The 
automated strategy used by Scalpel to select the boundaries of the 
reference sequence improves upon TIGRA’s approach, in which 
the reference region is selected only on the basis of input param-
eters. After the source and sink nodes are identified, all possible 
source-to-sink paths are enumerated up to a maximum number 
(default: 100,000) using a depth-first search (DFS) traversal of the 
graph, similarly to the SUTTA assembly algorithm33. Note that 
because the regions to assemble are very small, time and space 
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computational complexities associated with large-scale whole-
genome assembly are not relevant, and an exact brute-force strat-
egy can be efficiently applied.

If there are no repeat structures in the graph, all the candidate 
paths are enumerated and aligned to the portion of the reference 
sequence delimited by source and sink k-mers using the stand-
ard Smith-Waterman-Gotoh alignment algorithm with affine-
gap penalties. The list of candidate mutations is then generated. 
Under typical conditions, the assembler reports a single path for 
homozygous mutations and two paths for heterozygous muta-
tions. For example, if the sample had an insertion in only one of 
the two haplotypes, the assembler would discover the indel and 
also the unmodified reference sequence. Note that a traditional 
sequence assembler would have selected only one of these two 
paths (usually with higher coverage) and discarded the other one. 
Scalpel instead examines both paths to distinguish: for example, 
between homozygous and heterozygous mutations. However, in 
practice, various factors in real data complicate the detection proc-
ess, and sometimes multiple paths are reported in the case of more 
exotic variations. For example, the Illumina sequencing platform 
is particularly error prone around microsatellites (for example, 
homopolymer runs) and, as a consequence, multiple candidate 
alleles are elucidated by the data at these loci. Highly polymor-
phic regions are also prone to generate multiple paths and could 
be computationally demanding: if the distance between multiple 
nearby mutations is larger than the (automatically) selected k-mer 
value, each of the associated bubbles in the graph will give rise 
to two different paths. Finally, it is important to note that SNVs 
are also computed by Scalpel, but they are not reported in output. 
SNVs are used internally for important downstream analysis of 
the variants called in order: for example, to compute coverage 
around the indels and to correctly characterize the zygosity of 
the mutations.

Exome-capture data. Exome capture for the sample K8101-49685 
was carried out using the Agilent 44-Mb SureSelect protocol and 
then sequenced on Illumina HiSeq2000 with average read length 
of 100 bp. More than 80% of the target region was covered with a 
depth of 20 reads or more. All of the HiSeq data have been sub-
mitted to the Sequence Read Archive (http://www.ncbi.nlm.nih.
gov/sra/) under project accession number SRX265476.

MiSeq validation. A total of 1,400 indels were selected for MiSeq 
validation over the course of this study. MiSeq validation was 
initially performed on 1,000 indels before the release of GATK 
v.3.0 (see the Results section for detailed selection criteria). After 
the release of GATK v.3.0, we selected an additional 400 indels 
for MiSeq validation (see Supplementary Note 3 for detailed 
selection criteria). Out of these 400 indels, 215 were covered 
with more than 1,000 reads in the initial MiSeq data set or in 
another MiSeq data set reported by O’Rawe et al.2. Thus, the 
second MiSeq validation experiment was performed on the 
remaining 185 indels. For both of the MiSeq validation experi-
ments performed during the course of this study, PCR primers 
were designed using Primer 3 (http://primer3.sourceforge.net/) to 
produce amplicons ranging in size from 200 to 350 bp, with indels 
of interest located approximately in the center of each amplicon. 
Primers were obtained from Sigma-Aldrich in 96-well mixed-
plate format, 10 µmol/L dilution in Tris per oligonucleotide. Upon 

arrival, all primers were tested for PCR efficiency using a HapMap 
DNA sample (catalog ID NA12864, Coriell Institute for Medical 
Research) and LongAmp Taq DNA polymerase (New England 
Biolabs). PCR products were visually inspected for amplification 
efficiency using agarose gel electrophoresis. For the validation 
experiment, this same PCR was performed using sample K8101-
49685 genomic DNA as template. PCR product was verified on E-
Gel 96 gels (Invitrogen) and subsequently pooled for ExoSAP-IT 
(Affymetrix) cleanup. The cleanup product was further purified 
using QIAquick PCR Purification Kit (Qiagen) and quantified by 
Qubit dsDNA BR Assay Kit (Invitrogen). Library construction for 
the MiSeq Personal Sequencer platform (Illumina) was performed 
according to the Illumina TruSeq DNA Sample Prep LS proto-
col (for the initial 1,000 indels) and TruSeq Nano DNA Sample 
Preparation Guide (for the additional 185 indels), omitting the 
DNA fragmentation step. Finally, before we loaded the sample 
onto the MiSeq machine, the quality and quantity of the sample 
was again verified using the Agilent DNA 1,000 Kit on the Agilent 
Bioanalyzer and with quantitative PCR (Kapa Biosystems). This 
protocol generated high-quality 250-bp reads (paired end) with 
an average coverage of 47,018× (Supplementary Fig. 20). The 
reads were aligned with BWA-MEM (v.0.7.5a) to the reference 
human genome hg19. The alignment was sorted with SAMtools 
(v.0.1.18), and PCR duplicates were marked with the Picard tool 
set (v.1.91). Indels were realigned with the GATK (version v.2.6-4)  
using the IndelRealigner, and base quality scores were recali-
brated. Variants were then called with GATK UnifiedGenotyper. 
All of the MiSeq data have been submitted to the Sequence Read 
Archive under project accession number SRX386284.

Alignment. Sequencing reads from K8101-49685 exome-
capture data were aligned using BWA (v.0.6.2-r126) with default 
parameters to the human reference hg19. Alignments were 
converted from SAM format to sorted, indexed BAM files with 
SAMtools (v.0.1.18). The Picard tool set (v.1.91) was used to 
remove duplicate reads. These BAM files were used as input for 
all the indel callers used in this study. Reads coming from the rese-
quencing experiments were also aligned using BWA. However, if 
the indel approaches half the size of the read length, even after 
target resequencing, mapping the reads containing the indel is 
problematic. The problem is emphasized if the indel is located 
toward the ends of the read (instead of in the middle). To avoid 
this problem we aligned sequencing reads containing long indels 
(≥30 bp) using Bowtie2 (ref. 34) instead of BWA. Bowtie2 offers 
an end-to-end alignment mode that searches for alignments 
involving all of the read characters, also called an ‘untrimmed’ 
or ‘unclipped’ alignment. Specifically, we used the following 
parameter settings: “--end-to-end --very-sensitive --score-min 
L,-0.6,-0.6 --rdg 8,1 --rfg 8,1 --mp 20,20”.

Variant calling. Indels for K8101-49685 were called using Scalpel, 
GATK HaplotypeCaller and SOAPindel as follows.

Scalpel. Scalpel (v.0.1.1 beta) was run on the indexed BAM using 
the following parameter setting: “--single --lowcov 1 --mincov 3 
--outratio 0.1 --intarget”. Indels showing high coverage unbalance 
were then removed (χ2 k-mer score >20).

GATK. GATK software tools (v.2.4-3 and v.3.0) were used for 
improvement of alignments and genotype calling and refining 
with recommended parameters. BAM files were realigned with 
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the GATK IndelRealigner, and base quality scores were recali-
brated by the GATK base quality recalibration tool. Genotypes 
were called by the GATK UnifiedGenotyper and HaplotypeCaller. 
According to the GATK recommendations, the Variant Quality 
Score Recalibration (VQSR) was not used for the K8101-49685 
single-exome experiment. Also, hard filtering criteria (such us 
“QD < 2.0, ReadPosRankSum < -20.0 FS > 200.0”) were not used 
for v.2.4.3 as they were aggressively removing long indels from 
the HaplotypeCaller calls (Supplementary Note 3), but they were 
used instead for the more recent HaplotypeCaller from GATK 
v.3.0. It is important to report that the bias toward deletions for 
HaplotypeCaller has been extensively reduced with the release 
of GATK 2.8 and 3.0 in December 2013 and March 2014 after 
our initial MiSeq resequencing experiments were completed 
(Supplementary Note 3). However, many research groups 
have already employed the older version of HaplotypeCaller for 
genetic studies and are still extensively using it. We expect GATK, 
along with our own and other algorithms, to improve over time 
as new insights are made into the mutation mechanisms and  
error profiles.

SOAPindel. SOAPindel (v.2.0.1) was run on the indexed BAM 
file using default parameters. According to SOAPindel documen-
tation, putative indels are initially assumed to be located near the 
unmapped reads whose mates mapped to the reference genome. 
SOAPindel then executes a local assembly (k-mer = 25 by default) 
on the clusters of unmapped reads. The assembly results were 
aligned to reference in order to find the potential indels. To dis-
tinguish true and false positive indels, SOAPindel generates Phred 
quality scores, which take into consideration the depth of cover-
age, indel size, number of neighboring variants, distance to the 
edge of the contig, and position of the second different base pair. 
Only those indels filtered by internal threshold are retained in 
the final indel call set.

Finally, for all pipelines, we selected only indels located within 
the regions targeted by the exome-capture protocol.

The Simons Simplex Collection. The Simons Simplex 
Collection35 (SSC) is a permanent repository of genetic samples 
from 2,700 families operated by SFARI (http://sfari.org/) in collab-
oration with 12 university-affiliated research clinics. Each simplex 
family has one child affected with autism spectrum disorder and 
unaffected siblings. Each genetic sample also has an associated 
collection of phenotype measurements and assays. The results 
presented in this work are based on a subset of the SSC composed 
of 593 families (2,372 individuals). Specifically, this subset of the 
SSC collection corresponds to families that have been examined 
in three recent studies: 343 families from Iossifov et al.6 (CSHL), 
200 families from Sanders et al.23 (Yale) and 50 families from 
O’Roak et al.24 (University of Washington). We selected only fam-
ily units of four individuals (father, mother, proband, one unaf-
fected sibling), referred to as “quads,” for all analyses in this study. 

All available SSC quad samples were evaluated using the criterion 
described in Iossifov et al.6. Analysis was supervised under the 
CSHL IRB review committee. SFARI maintains the consent of all 
individuals in the SSC.

Analysis of de novo indels related to autism. After eliminating 
all candidate positions that are common in the population, and 
thus unlikely to be related to the disorder, we reassembled each 
region associated with the candidates indels across the family 
members using a more sensitive parameter setting for Scalpel. 
Specifically, we reduced the starting k-mer value to 10 and turned 
off the removal of low-coverage nodes. This step was important 
to adjust for possible allele imbalance favoring the reference allele 
over the mutation in the parents but was impractical to do initially 
for the whole collection: lowering the k-mer and keeping all the 
nodes in the graph substantially increase the computation com-
plexity of the algorithm. Then we selected de novo indels with a 
χ2 k-mer score ≤10.84. The χ2 k-mer score is computed using the 
standard formula for the chi-square test statistics (χ2) but applied 
to the k-mer coverage of the reference and alternative alleles for 
the mutation according to the following formula:
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o are the observed k-mer coverage for the ref-
erence and alternative alleles, respectively, and CR
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the expected coverage such that CR
e = CA

e = totCov/2. Finally, we 
enforced parents to have at least a k-mer coverage of 15 over the 
assembled region. The final list of mutations obtained after apply-
ing these filters was then analyzed for enrichment tests between 
autistic and non-autistic individuals and FMRP enrichment tests 
using the methods established in Iossifov et al.6.

System requirements and software availability. Scalpel is writ-
ten in C++ and Perl. The source code is freely available as an 
open-source software project on the SourceForge website at 
http://scalpel.sourceforge.net/. It usually takes 2–3 h to process 
one exome-capture data set (80% of target at ≥20×) using ten cores 
and requiring a minimum of 3 GB of RAM.
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