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Abstract  16 

Single-cell genomic analyses can provide information on cellular mutation and tumor 17 
heterogeneity, whereas single-cell transcriptomic analyses can distinguish cell types and states. 18 
However, the disconnect between genomic and transcriptomic spaces limits our understanding of 19 
cancer development. To address this, we developed a novel high-throughput method that 20 
simultaneously captures both DNA and RNA from single nuclei and new algorithms for the quantitative 21 
clustering and filtering of single-cell data. We applied this hybrid protocol to 65,499 single nuclei 22 
extracted from frozen biopsies of five different endometrial cancer patients and separately clustered the 23 
genome and expression data. We also analyzed 34,651 and 21,432 nuclei using RNA-only and DNA-only 24 
protocols, respectively, from the same samples to verify the clustering. Multiple tumor genome and/or 25 
expression clusters were often present within an individual patient, and different tumor clones could 26 
project into distinct or shared expression states. Almost all possible genome-transcriptome correlations 27 
were observed in the cohort. Stromal clusters were largely shared between patients, but some patients 28 
possessed unique stromal components, or mutant stroma with a significant loss of the X chromosome. 29 
This study reveals the complex landscape involving genome and transcriptome interactions at single-cell 30 
level, and provides new insights into mutant stroma as a potential clinical biomarker. 31 

 32 

Main 33 
To enhance our understanding and treatment of cancer, it is important to understand its 34 

heterogeneity, its interaction with the host, and the role the host plays in assisting or inhibiting the 35 
invasive somatic clone. Single-cell analysis offers one possible route to improved understanding. 36 
Integrating genomic and transcriptomic information would enable us to better explore the stromal 37 
reaction to neoplasm and the diversity of transcriptional states within tumors, making it possible to 38 
understand cooperation and competition between cancer cells and stroma, to view the emergence of 39 
malignant from pre-malignant cells, and to discern the forces that drive particular expression states. To 40 
achieve this aim and demonstrate its potential, we developed and applied a high-throughput single-cell 41 
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analysis of DNA and RNA to five cases of uterine cancer. We show the method yields new information, 42 
and provides insights into the nature of the cancer stroma. 43 

Methods for high throughput single-cell DNA1-3 or RNA4-11 alone are well established. For 44 
investigating both omics, there are methods12-16 for inferring copy number states from RNA-seq data 45 
based on the assumed positive correlation between genome copies and gene expression. While there 46 
are low-throughput methods17-28 for capturing both nucleic acids from single cells, among the limited 47 
high-throughput whole-genome and whole-transcriptome techniques29, none have been applied to 48 
tumor biopsies to systematically study the cancer heterogeneity and stromal mutations with the 49 
throughput demonstrated in this study. 50 

In this paper, we introduced an innovative high-throughput technology in which both DNA and 51 
RNA sequences can be captured from the same cell nucleus. Post-sequencing, the DNA and RNA layers 52 
are bioinformatically separated by their mapping properties and subsequently analyzed. We chose to 53 
work with nuclei because nuclei from frozen biopsies were a more available and abundant clinical 54 
sample source than cells. This multi-omics method is a progression from the single-omic BAG platform30, 55 
in which single cells were encapsulated into individual balls of acrylamide gel, with either DNA or RNA 56 
captured by Acrydite primers that were copolymerized into the gel matrix. We applied our hybrid DNA-57 
RNA approach to frozen tissue biopsies of five patients with endometrial cancer. We found sufficient 58 
transcriptional complexity in the nuclear RNA to cluster by cell type and state, and sufficient copy 59 
number information in the DNA layer to readily distinguish stroma from tumor components by genomic 60 
DNA analyses. These clustering patterns were confirmed by published RNA-only and DNA-only 61 
protocols. In addition, we developed a novel multinomial algorithm, the “multinomial wheel,” to 62 
quantitatively measure the deviation of each single cell from the main clusters. This allowed us to 63 
effectively remove cell collisions, and gave us insights into the minority of cells showcasing tumor 64 
genomes and stromal expression patterns and those with normal genomes but tumor expression 65 
profiles. 66 

Although tumor expression clusters are highly distinct between patients, within a given patient, 67 
we often observed multiple tumor expression states. We found that one tumor DNA clone may project 68 
into one or more of these distinct expression states, which may or may not be shared by another tumor 69 
clone from the same patient. In five patients, we observed virtually every possible projection pattern 70 
between genomic and transcriptomic states. Conversely, stromal expression clusters are largely shared 71 
between patients, although in different proportions. Two patients exhibited unique stromal 72 
components, and all five displayed instances of mutant stroma. In the patient with the worst clinical 73 
outcome, almost half of her plasma cells lost one copy of the X chromosome. These observations 74 
demonstrated the potential and immediate applicability of this multiomic method in the investigation of 75 
cancer evolution, stromal mutations, and the intricate interplay between genome and transcriptome. 76 

 77 

Results 78 

The Hybrid Platform  79 
 We study DNA and RNA templates from the same individual nuclei using BAG technology, a 80 
flexible platform open to design modifications30. The BAG platform extends the capabilities of traditional 81 
droplet methods3,4 by polymerizing droplets containing nuclei in the presence of Acrydite-modified 82 
primers. The Acrydite-modified primers form a primer-template duplex with the nucleic acid contents of 83 
the cell or nucleus. Once polymerized, the “balls of acrylamide gel” or BAGs are removed from oil and 84 
processed in aqueous solution. For DNA-only or RNA-only protocols, the primers that capture nucleic 85 
acids are extended using polymerase or reverse transcriptase, resulting in template copies from the 86 
same individual nuclei being covalently bound together in the same bag. After processing, we randomly 87 
distribute BAGs into 96 wells, affixing one of 96 unique well-barcode sequences to each template on 88 
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each BAG in each well. Pooling the BAGs together and randomly splitting them again is defined as a 89 
“pool-and-split” process. We repeat this process three times to generate a unique signature of 963 or 90 
about one million unique BAG barcodes. During the first two pool-and-split labeling steps, in addition to 91 
the BAG barcodes, we also add eight random bases to each template. When combined with the four 92 
bases from the genomic sequences, these twelve random bases form a varietal tag (or UMI) that 93 
uniquely labels each template molecule. 94 
 In this paper, we used BAGs to capture DNA and RNA from the same individual nucleus or cell 95 
under mild denaturing conditions. To capture both types of nucleic acids, we used a mixture of Acrydite-96 
modified random T/G and oligo d(T) primers (Fig. 1a). The primers are then extended using reverse 97 
transcriptase and DNA polymerase under conditions favorable to both reactions (see Methods and 98 
Supplementary Protocol). We apply the pool-and-split labeling process with varietal tags as described 99 
above, and then combine all the BAGs into a single PCR reaction, followed by tagmentation to generate 100 
a sequencing library. 101 

The targets of our investigation are frozen biopsy samples from five uterine cancer patients. The 102 
samples include tumor tissue, which we denote as Tumor 1 through Tumor 5. For three patients (1, 2 103 
and 4), we also have samples from normal adjacent tissue, which we denote as Normal 1, Normal 2, and 104 
Normal 4. In addition to our new hybrid protocol for simultaneously analyzing both DNA and RNA, we 105 
also generated sequencing libraries using traditional BAG sequencing of DNA alone (labeled as DNA-106 
only) and RNA alone (labeled as RNA-only) on the same samples. The main differences between the 107 
three protocols are illustrated in Supplementary Fig. 1a. Additionally, we applied the 10x Genomic 108 
Chromium v3 single-cell RNA sequencing method on Tumor 1 for comparison purposes. 109 

By design, the paired-end reads in the sequencing library are asymmetric: one end (Read 2) of 110 
the read-pair contains information about the template sequence, while the other end (Read 1) contains 111 
the BAG barcode, the varietal tag, and some template sequence. We first confirm that the reads have 112 
the correct structure with BAG barcodes and NLAIII cutting sites at the correct positions (Fig. 1a), and 113 
then extract the BAG barcode, varietal tag, and sequence information. We then use HISAT231, a sensitive 114 
alignment program useful for mapping both DNA and RNA reads, to map the template sequences. On 115 
average, 84% of reads have a high-quality map with a mapping quality score equal to 1 or 60 and are 116 
only primary mappings. Since sequence amplification occurs before tagmentation, we often obtain 117 
reads from different fragmented copies of the same initial template. These reads will have the same 118 
BAG barcode, varietal tag, and similar mapping regions, but they will have different sequence 119 
information on the opposite end of the read-pair. For this reason, we group reads with the same BAG 120 
barcode and varietal tag into templates, and templates with the same BAG barcode are grouped into 121 
BAGs.  122 

We only consider BAGs with a sufficient number of templates, using the “elbow bend” in the 123 
cumulative distribution to establish the cutoff. For nuclei from frozen tissue biopsies, on average, we 124 
observe 20 reads per template, 8200 templates per BAG, and 3500 BAGs per experiment when using the 125 
hybrid protocol. The sequence and its context are used to discern whether templates are derived from 126 
DNA or RNA. For each template, we document all its mapping information, including overlap with exons, 127 
introns, UTRs, and behavior at splice sites. We established four categories: 128 

1. Exonic: If greater than 90% of template bases are within a single gene transcript and 129 
either >50% of the bases mapped to exons of that gene or the template includes a known splice 130 
junction of the target gene. 131 

2. Intergenic: If all template bases are intergenic. 132 
3. Intronic: If less than 10% of template bases map to exons and not intergenic. 133 
4. Uncategorized: does not satisfy 1-3. 134 

We apply these categorization rules to all seven datasets for all protocols. The full distribution of each 135 
category per sample is shown in Supplementary Fig. 1b. From the DNA-only protocol, we find that 2.5% 136 
of templates are Exonic, 52% are Intergenic and 45% are Intronic, aligning closely with the proportions 137 
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anticipated from random sampling of the genome. In contrast, the great majority (>80%) RNA-only data 138 
templates are mapped to genes, and a sizable proportion are mapped to exons (about 18%) and only 139 
17% are Intergenic. Templates from the hybrid protocol were intermediate to the two: 10% Exonic 140 
templates, 30% Intergenic templates, and 55% Intronic templates. The hybrid protocol is composed of a 141 
mixture of DNA-only and RNA-only distributions. To divide the templates into RNA or DNA components, 142 
we apply a conservative rule: we restrict RNA data analysis to Exonic templates (RNA layer) and we 143 
restrict DNA data analysis to Intergenic templates (DNA layer) (see Methods for detailed filtering 144 
process). The distribution of total unique templates, unique Exonic templates, and unique genes for 145 
each sample in the cancer cohort—as well as for a human-mouse mixture experiment—using the hybrid 146 
protocol, is presented in Supplementary Fig. 2.   147 
 148 

Splitting layers comparison 149 
Because our informatics relies on a conservative segregation of templates into molecular layers, 150 

we expect some degradation of signal from excluded templates. To measure the extent of this loss, we 151 
apply this same layer-splitting method to the hybrid protocol, as well as to the DNA-only and RNA-only 152 
datasets. Before conducting separate layer analyses, we found it necessary to introduce additional 153 
measures to control bias in the hybrid data, as we observed interference of RNA with DNA profiling. For 154 
DNA profiling and clustering, we excluded certain intergenic genomic hotspots that many nuclear RNA 155 
sequences map to, which significantly increased the quality of copy number data from the hybrid 156 
protocol (Supplementary Fig. 3). These hotspots were present in data from both tumor and normal 157 
tissues. The copy number data quality from the hybrid protocol was substantially superior to that 158 
derived from the RNA-only protocol, with a quantitative measure of the signal-to-noise ratio being 159 
discussed in the following section. 160 
 161 
DNA-layer results 162 

Restricting the DNA-only sequence data to the DNA layer results in a 54% reduction in template 163 
counts. First, to estimate the effect on the signal-to-noise ratio for single cells between different 164 
protocols, we use Tumor 1 (Fig. 2a) which has a 100 MB deletion on chromosome 5 that spans 13 bins 165 
for all tumor cells despite different tumor clones. For each single cell, we compare the average template 166 
counts of a normal copy 2 region (13 bins from chromosome 10) to the average template counts in the 167 
copy 1 region in chromosome 5. The ratio of these averages estimates the signal strength between copy 168 
numbers 2 and 1. We compute the mean normalized standard deviations over the bins in these regions 169 
to estimate the relative noise. Supplementary Fig. 4 shows the mean versus standard deviation (SD) for 170 
single cells from the DNA layer for DNA-only (green), RNA-only (blue), and the hybrid method (orange). 171 
We also show the results of using all the templates from the DNA-only experiments (red). As expected, 172 
we have the least noise using all the DNA-only data (SD of 0.148). The signal-noise-ratios (mean/SD) for 173 
all-molecules DNA-only data, DNA layers of DNA-only data, hybrid data, and RNA-only data are 13.0, 9.7, 174 
4.3, and 1.0, respectively. 175 

Second, we demonstrate that clustering copy number patterns using DNA-layer molecules or all 176 
DNA molecules generates similar DNA clonal information. Using DNA-only data from Tumor 2 as an 177 
example (Supplementary Fig. 5), we show that Seurat clustering generates the same number of clusters 178 
(Supplementary Fig. 5a,b) and almost identical copy-number heatmaps (Supplementary Fig. 5c,d) using 179 
either all molecules or only DNA-layer molecules as bin counts. Both clusterings in Supplementary Fig. 180 
5a and 5b use the same nuclei. The heatmap in Supplementary Fig. 5e shows the number of cells in 181 
each clone of the two clusterings, and we find that most of the cells belong to the same DNA clones in 182 
both clusterings. To quantify this result, we examine all the nuclei pairs in both clusterings and check 183 
whether each nuclei pair stays in the same or different DNA clones when clustered using all molecules or 184 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560973doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560973
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

only DNA-layer molecules. We present the result in Supplementary Fig. 5f and show that 97.6% of the 185 
nuclei pairs are on the diagonal, indicating that the DNA layer preserves the DNA clonal information.  186 

Third, we show the similarity between the DNA layer of the hybrid protocol and the DNA-only 187 
protocol. We use tumor clones of Tumor2 as an example. Clusterings of both protocols generate the 188 
same number of DNA clones and copy-number patterns (Supplementary Fig. 6a,b). To quantify this 189 
result, we measure the proximity of every single tumor nucleus to the centroid of each tumor clone. We 190 
compute the centroid of each tumor clone by averaging all the nuclei belonging to that clone as 191 
determined by Seurat clustering. Given the centroid of each of the four tumor clones and 8 intermediate 192 
linear combinations equally spaced between each pair of tumor clone centroids (for a total of 52 193 
possible states), we calculated the most likely state for each nucleus based on multinomial distribution. 194 
For each nucleus, the distance between this spot and its Seurat-assigned clone is called its “Distance 195 
from home”. More details and validation of multinomial wheel analysis will be further discussed in the 196 
last section. In Supplementary Fig. 6c,d, we plot the most likely state for each tumor nucleus from the 197 
hybrid protocol and DNA-only protocol, respectively, with the colors marking its cluster identity. The 198 
histograms on the right show the distribution of the distance from home for each nucleus. Compared to 199 
the DNA-only protocol where 84.5% of the nuclei are within two units from the centroid of each clone, 200 
this number drops to 77.2% for the hybrid protocol. Therefore, we estimate the resolution of the hybrid 201 
protocol dropped by about 9% compared to the DNA-only protocol. Furthermore, we calculate the 202 
distance of nuclei from the hybrid protocol to the tumor clone centroid determined by the DNA-only 203 
protocol, and vice versa. As shown in Supplementary Fig. 6e,f, there is a 10.7% reduction of hybrid data 204 
to DNA-only centroids compared to hybrid centroids, but there is no reduction of DNA-only data on 205 
hybrid protocol centroids, showing the normalized averaged bin counts of each tumor clone for each 206 
protocol are similar. Heatmaps of all five cases show clonal similarities between the hybrid protocol and 207 
DNA-only protocol (Supplementary Fig. 7.) 208 

 209 
RNA-layer results 210 

Similar to the comparison between DNA layer and all DNA molecules, we use RNA-only data 211 
from Tumor 2 to demonstrate that restricting the analysis to the RNA layer generates similar results to 212 
using all of the RNA templates mapped within transcripts (Supplementary Fig. 8). UMAP clustering using 213 
only the RNA layer templates (Supplementary Fig. 8a) or all RNA templates (Supplementary Fig. 8b) 214 
generates the same number of clusters. Both clusterings were performed using the same group of 215 
nuclei. The number of nuclei in each clustering is shown in Supplementary Fig. 8c, in which 94.3% of the 216 
nuclei remain in the same expression clusters regardless of whether the RNA-layer or all-molecule 217 
clustering was performed. We further quantify this result by examining all nuclei pairs to check whether 218 
they reside in the same or different clusters under two clusterings Supplementary Fig. 8d. We found 219 
that 95.2% of the nuclei pairs are on the diagonal, indicating that restricting the analysis to the RNA-220 
layer conserves much of the transcriptional clustering information.  221 

Second, to demonstrate that the expression clustering results were similar between the hybrid 222 
and RNA-only protocols, still using Tumor 2 as an example (Supplementary Fig. 9), we first clustered the 223 
data from each protocol separately (Supplementary Fig. 9c, 9g). We then combined the data generated 224 
from the two protocols and clustered the merged dataset together, adjusting for technical variations in 225 
the protocols (see the Methods section). We show nuclei from each protocol in the merged clustering in 226 
the panels of Supplementary Fig. 9a, 9e. We found that all clusters were populated by nuclei from both 227 
protocols (Supplementary Fig. 9d). The merged-data clustering generated the same grouping of nuclei 228 
as the clustering by either protocol alone. This was illustrated in heatmap matrices of identities 229 
(Supplementary Fig. 9b, 9f). The columns of the heatmap show clusters from either the hybrid or the 230 
RNA protocol alone, while the rows show clusters from the merged data. We found that most of the 231 
nuclei fell on the diagonal of the heatmaps, meaning that nuclei of the same type were predominantly 232 
grouped together whether clustered alone or in the merged data. For all five cases, the quality of 233 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560973doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560973
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

separations from the hybrid protocols (leftmost panel) and the RNA-only protocols (rightmost panel) 234 
was very similar (Supplementary Fig. 10).  235 

Finally, we compare the RNA layer of the hybrid protocol to the commonly used 10x Chromium 236 
v3 single-cell RNA-seq method (Supplementary Fig. 11). We used Tumor 1 as an example since, in 237 
addition to diverse stromal components, we observed two distinct tumor expression states (RNA1a and 238 
RNA1b) that are independent of the two tumor DNA clones (discussed further in later sections and in 239 
Fig. 2a). We find that the RNA clustering from 10x Chromium v3 also separates the tumor nuclei into 240 
two expression states mainly based on collagen-related gene expressions, and with similar cell 241 
proportions to the hybrid protocol (Supplementary Fig. 11a,b). To demonstrate the similarities between 242 
these two protocols in distinguishing tumor cluster RNA1a from RNA1b, we study the correlation of the 243 
fold change between RNA1a and RNA1b of all the genes for the two protocols (Supplementary Fig. 11c). 244 
We restrict the analysis to genes that were detected in at least 10% of cells in either RNA1a or RNA1b 245 
clusters for both protocols. Running an ordinary least squares (OLS) regression of y on x produces a 246 
highly significant coefficient of 0.92 (Supplementary Fig. 11c). In addition, we plot the ratio of the 247 
proportions of cells expressing these genes in RNA1a versus RNA1b for both protocols (Supplementary 248 
Fig. 11d). Correlation tests under the null hypothesis H0: ρ=0 and the alternative hypothesis H1: ρ>0 249 
confirm that the gene expressions and cell proportions in these two protocols have strong positive 250 
correlations with both p-values less than 2.2e-16. The top marker genes that either positively or 251 
negatively distinguish RNA1a from RNA1b for both protocols, with p-values from the Wilcoxon Rank Sum 252 
test, are listed in Supplementary Fig. 11e. 253 

 254 
Doublets 255 

We performed a human-mouse nuclei mixture experiment to study the levels of doublets and 256 
cross-contamination. Out of 1299 nuclei, after removing templates that mapped to both the mouse 257 
genome and human genome, we detected 619 nuclei with the majority (>85%) of the templates mapped 258 
to the human genome, and 662 nuclei with the majority (>85%) of the templates mapped to the mouse 259 
genome, and there were 18 doubles (1.39%) (Fig. 1b). We also show that the level of doublets is 260 
consistent between DNA layer and RNA layer, as shown in Supplementary Fig. 12, where only 5 out of 261 
1299 nuclei (0.38%) nuclei showed disagreement of identities between two layers. The experiment also 262 
presented a low level of cross-contamination. As shown in Fig. 1c, the percentage of mouse templates in 263 
human nuclei had a median of 0.20%, and the human templates in mouse nuclei had a median 264 
percentage of 0.55%. This low level of cross-contamination also is preserved in both the DNA layer and 265 
RNA layer (Supplementary Fig. 12). 266 

In addition, we performed two mixture experiments using nuclei from tumor biopsies. In each 267 
experiment, the frozen material from two patients was mixed prior to preparing single nuclei, sorting, 268 
and encapsulating them in BAGs. The source of each nucleus in the mixture experiments could be 269 
readily determined by its abundance of germline single nucleotide polymorphisms (SNPs), and 270 
collisions/doublets could be readily identified by having SNPs from both sources. One library was a 271 
mixture of nuclei from Patient 1 and Patient 5 (Supplementary Fig. 13a), and the other was from Patient 272 
2 and Patient 5 (Supplementary Fig. 13b). If the SNPs in a BAG were contaminated by at least 15% of 273 
SNPs from the other patient, it was considered a collision. Based on this measure, 5.3% (out of 2526 274 
nuclei) and 6.0% (out of 4244 nuclei) of BAGs were judged as collisions in these two experiments, 275 
respectively (Supplementary Fig. 13c, 13d). 276 

 277 
Alluvial diagrams illustrating complex tumor projection patterns 278 

Having validated the clustering patterns from the hybrid platform, we were able to confidently 279 
assess the projections of the genomic clusters onto the expression clusters. We first demonstrate this 280 
concept through a mixture experiment involving two cell lines: a normal male fibroblast, SKN1, and a 281 
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breast cancer cell line, SKBR3. The distributions of the numbers of total unique molecules, Exonic 282 
molecules, and detected genes from this experiment are shown in Fig. 1d-f. We illustrate the clustering 283 
results and heatmaps based on the copy number and gene expression in Fig. 1g-k. The alluvial diagram 284 
(Fig. 1i) shows the projection of the genomic clones into the expression clusters. As expected, we 285 
observed a good one-to-one correlation between the genome and transcriptome of each cell type.  286 

After validating the alluvial diagram using cell lines, we used it to illustrate the genome-287 
transcriptome correlations in all five tumor samples (Fig. 2). In each panel of Fig. 2, we present the 288 
clustering results for both the DNA layer and RNA layer, as well as the copy-number and gene-289 
expression heatmaps to illustrate the features that distinguish each DNA clone or RNA cluster in the five 290 
cases. In general, the tumor genome clones projected distinctly from the normal genome clones, 291 
although there were exceptions which we term “crossovers” and will discuss in more depth later.  292 
 Next, we focused mainly on the tumor genome projection patterns. To classify projections, we 293 
used a set of letters and numbers to represent the tumor genome and tumor RNA clusters, respectively. 294 
For example, {A:1,2; B:2} indicates tumor clone A projected into RNA clusters 1 and 2, whereas tumor 295 
clone B from the same primary tumor tissue projected only into RNA cluster 2. Each of the five tumors 296 
had a different projection pattern, and we observed almost all the possible patterns, which are defined 297 
as follows: distinct tumor clones could each project into distinct expression clusters (e.g., {A:1; B:2} for 298 
Tumor 5), into shared clusters (e.g., {A:1,2; B:1,2} for Tumor 1), or into a combination of distinct and 299 
shared clusters (e.g., {A:1,2; B:1} for Tumor 4). Alternatively, multiple DNA clones could project into a 300 
single RNA cluster (e.g., {A:1; B:1; C:2; D:2} for Tumor 2), or a single tumor clone could project into two 301 
RNA clusters (e.g., {A:1,2} for Tumor 3). We discuss the special aspects of each case in the following 302 
paragraphs.  303 
 304 
Special aspects of each case 305 
 Tumor 1 was a uterine carcinosarcoma with greater than 90% of cells in the tumor tissue having 306 
copy number variations (Fig. 2a). The copy number heatmap showed two tumor DNA clones, with the 307 
primary difference being that clone T1B had a lower copy number in a region on chromosome 13. The 308 
alluvial plot showed that cells from each tumor DNA clone projected about equally into both tumor RNA 309 
clusters. Cluster RNA1a had a high expression level of fibroblast-specific genes such as fibroblast growth 310 
factor receptor genes (FGFR3) and collagen genes (COL9A2) (Supplementary Fig. 14a), consistent with 311 
the pathological classification of this tumor as having a sarcomatous component. These fibroblast genes 312 
had lower expression in cluster RNA1b. On the other hand, cluster RNA1b had higher expression of 313 
RSPO4, a key regulator of the Wnt/β-catenin signaling pathway, and DUSP6, a negative regulator of the 314 
ERK signaling pathway (Supplementary Fig. 14a). When we projected the two tumor RNA clusters back 315 
into DNA UMAP space, we found that the nuclei from both RNA clusters were randomly distributed in 316 
DNA space and unrelated to DNA cluster patterns (Supplementary Fig. 15a-c). The two tumor RNA 317 
clusters were also not separated by cell cycle, template, or gene counts (Supplementary Fig. 15d). The 318 
normal nuclei from this patient's primary tumor made up a minor fraction of the total.  319 

Tumor 2 was diagnosed as a uterine serous carcinoma, from which we observed four DNA tumor 320 
clones and two tumor RNA clusters (Fig. 2b). The two RNA clusters to which these tumor clones 321 
projected had many distinguishing gene sets (Fig. 2b). Tumor DNA clones T2A and T2B each projected to 322 
RNA2a, while T2C and T2D each projected to RNA2b. The major feature shared by T2A and T2B, but not 323 
T2C and T2D, was the loss of an entire X chromosome. In fact, one gene that significantly distinguished 324 
RNA2a and RNA2b was XIST, which had low expression in RNA2a. Compared to tumor 1, the normal 325 
genomes of tumor 2 projected to many more distinct RNA clusters. In this example, we observed two 326 
normal DNA clusters, one with a single copy of the X chromosome named as DNA clone "Nx". From the 327 
alluvial plot in Fig. 2b, we found that most of the nuclei in this Nx DNA clone projected to plasma cells as 328 
well as T cells. As can be seen in the zoomed image from Supplementary Fig. 14b, the projection of “Nx” 329 
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into the "Plasma cells" cluster also had a low expression of XIST. We quantify this observation by 330 
comparing the XIST RNA-layer counts (Exonic templates) between nuclei with two copies and one copy 331 
of the X chromosome. Compared to the clone with one copy of the X chromosome, where 95% of the 332 
nuclei have 0 XIST RNA counts, there is a significantly higher RNA count (p-value < 1.7e-22, t-test) for the 333 
other group of plasma cells where the median XIST RNA count is 3 (Supplementary Fig. 14b). As XIST 334 
RNA is required for X-chromosome inactivation and is only expressed from the inactive X-335 
chromosome32, this result also verifies that nuclei from the “Nx” DNA clone lost their inactivated X 336 
chromosomes instead of not being captured by the hybrid protocol. 337 

Tumor 3 was an endometrial adenocarcinoma, and was the only example in which we did not 338 
observe any discernible tumor subclones. Despite this, the tumor projected into two distinct RNA 339 
clusters (Fig. 2c), which differed most notably in the elevated expression of the estrogen receptor gene 340 
ESR1 in RNA3a (Supplementary Fig. 14c). As assessed by immunostaining, about 50% of the tumor cells 341 
from the primary tumor expressed the estrogen receptor (Supplementary Fig. 14c), which aligned with 342 
what we saw from the RNA expression.  343 

Tumor 4 was another uterine carcinosarcoma case. The copy number heatmap showed that the 344 
nuclei with copy-number variations were clustered into two DNA clones with significant differences in 345 
chromosomes 1, 8, and the X chromosome (Fig. 2d). However, for RNA clustering, there was only one 346 
major RNA tumor cluster (RNA4a) containing nuclei from both DNA tumor clones. In addition, there 347 
were two small RNA clusters, RNA4b and RNA4c, both close to the main cluster RNA4a in RNA space. 348 
RNA4c had projections from both tumor DNA clones and had a high expression level of G2-phase marker 349 
genes, MKI67 and CENPF. Nuclei in cluster RNA4b were mostly from DNA clone T4A (Fig. 2d). Compared 350 
to the main tumor RNA cluster RNA4a, RNA4b alone had a high expression level of many actin (ACTG1, 351 
ACTB) and tubulin genes (TUBA1B, TUBA1A, TUBB). RNA4b also highly expressed EEF2, an essential 352 
factor for protein synthesis, and GAPDH, a key enzyme in glycolysis, as shown in Supplementary Fig. 353 
14d. 354 

Tumor 5 was a uterine leiomyosarcoma. The biopsy sample from this patient had two sectors, 355 
with one being more hemorrhagic than the other. Clustering from each sector was done separately, and 356 
overall, the projections were similar. In Fig. 2e, we present only the results from Tumor 5-2 (with more 357 
nuclei). Tumor 5 had two DNA tumor clones with significant differences in chromosomes 1, 2, 6, 7, 8, 12, 358 
and the X chromosome. In RNA clustering, there were two large and one small tumor RNA clusters. The 359 
two distinct tumor DNA clones projected mainly to distinct tumor RNA clusters (Fig. 2e). Both of the two 360 
tumor RNA clusters, RNA5a and RNA5b, had high expression of fibroblast markers, which was 361 
concordant with the immunohistochemical analyses showing that the tumor cells were positive for h-362 
caldesmon33 (Supplementary Fig. 14e). RNA5a had higher expression of TNNT3, PLXDC1, and MTMR11, 363 
whereas RNA5b had higher expression of ADAM12, (involved in skeletal muscle regeneration), ZFHX4 364 
(related to muscle differentiation), FN1 (which encodes fibronectin) and collagen genes such as COL1A1 365 
and COL6A2. A small proportion of nuclei from both DNA clones went to the tumor RNA cluster RNA5c, 366 
which was cell-cycle related. RNA5c specifically had high expression of typical G2-phase markers MKI67, 367 
TOP2A, CENPF, and CENPE (Supplementary Fig. 14e).  368 
 369 
Common stromal and distinct tumor clusters 370 

To obtain a clearer picture of the data, we clustered single-nuclei hybrid data from all patients, 371 
separately for RNA and DNA, using the "FindClusters" and "RunUMAP" functions of Seurat (Fig. 3a and 372 
Fig. 3b, respectively). We examined a total of 35,369 nuclei from the sources indicated (Fig. 3c). For RNA 373 
clustering, we downsampled all nuclei to 400 "Exonic" templates. In addition, and only for the RNA 374 
clustering, we created a "garbage" cluster by including 3,500 nuclei from the DNA-only platform treated 375 
as hybrid libraries. As expected, the 3,500 nuclei from DNA-only libraries clustered together and were 376 
well separated from all other clusters (Supplementary Fig. 16). This "garbage" cluster also included 853 377 
low-quality nuclei from the hybrid protocol (Supplementary Fig. 16). We removed these nuclei from 378 
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further analysis. The aggregated "Exonic" template counts for all the nuclei in each expression cluster 379 
are shown in Supplementary Table 1. 380 

Tumor-genome clusters were quite distinct from the normal-genome clusters (Fig. 3b), and 381 
distinct clones within a patient mapped nearby to each other or merged into a single cluster at this 382 
resolution of clustering. The intra-tumor clones of patient 2 (T2A, T2B, T2C, and T2D) and patient 5 (T5A 383 
and T5B) were still preserved under this resolution. Cluster "N" was distinct from "Nx," the latter being 384 
otherwise normal cells with only one copy of the X chromosome.  385 

The projections of nuclei from six sample sources into the combined RNA space (Fig. 3a) are 386 
shown in Fig. 3d-i, where nuclei from a given sample are highlighted either in blue or red, depending on 387 
whether they are classified by DNA as tumor or normal genomes. In each panel, the nuclei from other 388 
samples are colored in light grey. The projections of the tumor genomes are very distinct between 389 
patients, well-separated from each other and the projections of the normal genomes. At this resolution, 390 
the intra-tumor RNA expression sub-clusters generally merged together.  391 

By contrast, the normal-genome cell projections from a given patient were quite distinct, and 392 
different patients have overlapping normal-genome projections. We labeled these common elements by 393 
their distinctive patterns of expression34 and list the marker genes in Supplementary Table 2. The blood 394 
components can be further distinguished into finer subtypes, as shown in the zoomed figure of Fig. 3a. 395 
The counts for these projections of DNA profiles into RNA profiles are shown in Fig. 4a. In addition, the 396 
hybrid protocol had good consistency between experimental replicates (Supplementary Fig. 17). 397 

Exceptions to overlapping normal projections were seen for patient 1, where there was a cluster 398 
mainly consisting of normal-genome cells, well-separated from the main stromal clusters. The epithelial-399 
like cluster "EP-T1" from the tumor tissue of patient 1 and the "EP-N1" cluster from an adjacent normal 400 
site were distinct from each other or the main epithelial cluster "EP". We believe this distinct “EP-T1” 401 
cluster was not due to batch effects, as it had very distinct and plausible gene expression patterns 402 
(Supplementary Fig. 18), and other stromal-cell projections from this sample mostly overlapped well 403 
with other samples.  404 

 405 
Loss of the X chromosome in blood elements 406 
 The loss of a single X chromosome in some cancer cells (such as in patients 2 and 4)35, as well as 407 
in a small proportion of certain stromal components in cancer patients or the elderly36, did not surprise 408 
us. However, we unexpectedly saw that nearly half of the relatively abundant plasma cells showed 409 
losses of the X chromosome in the patient (patient 2) with the worst clinical outcomes (Supplementary 410 
Table 3). The loss of the X chromosome in somatic lineages was observed in all five endometrial cancer 411 
cases. The summary of our data on the projection from normal genomes with and without two copies of 412 
the X chromosome is shown in Table 1. Another patient (patient 4) with poor clinical outcomes had 413 
about 15% loss of the X chromosome in the T cell components, further indicating that this might be a 414 
potential biomarker for negative outcomes.  415 
  416 
Crossovers and the multinomial wheel 417 
 We summarize the projection data for all nuclei from the hybrid protocol (Fig. 4a). As 418 
represented there and even more visually in the alluvial plots (Fig. 2), we saw what we termed 419 
"crossovers": nuclei that clustered as tumor or normal genomes, but then clustered in opposition as 420 
normal or tumor expression patterns. 357 tumor genomes projected to normal expression clusters, and 421 
401 normal genomes projected to tumor expression clusters. If correct, these crossovers could have 422 
profound biological significance (Discussion), but it is well-known that in single-cell methods, two cells 423 
or nuclei may ‘collide’ and create a merged profile. These collisions could occur at the droplet 424 
generation stage, during informatic processing (e.g., barcode collisions), or even biologically by cell 425 
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fusion in the host. We developed a filter to eliminate such collisions by making a quantitative measure 426 
of the deviation from a cluster.  427 
 To this end, we developed the "multinomial wheel." The idea behind this is to create a 428 
"multinomial state" from each Seurat cluster. There are as many multinomial states as Seurat clusters, 429 
one set of multinomial states for genomes and another set for expression. Each multinomial state is 430 
represented as a K-length vector summing to one, where K = 300 bins for DNA data and K = 29,637 431 
genes for RNA data. The value of a multinomial vector is the normalized centroid for the cluster. We 432 
then computed the deviation of every nucleus from its Seurat-assigned multinomial state as follows. 433 
Between every two multinomial states, we created nine new states that were equally spaced linear 434 
combinations of the two multinomial vectors. Thus, for N "home" states, we created 9×N×(N-1)/2 new 435 
multinomial states, making up the wheel (see Fig. 4a for the genome states, and Supplementary Fig. 19 436 
for expression states). Every home state has L = 9×(N-1) other states linked directly to it, each from one 437 
to ten ‘units’ away. For each nucleus, we asked which of the L+1 multinomial states (including its home 438 
state) would be the most likely to generate its observed template counts. The distance of that nucleus 439 
from its Seurat-assigned multinomial state was the number of units to its closest multinomial state. This 440 
was defined as the "distance from home" shown in the histograms in Fig. 4b and Supplementary Fig. 19.  441 
 We display each nucleus as a point on the wheel at its closest genome state (Fig. 4b, second 442 
panel from left). If the distance of the nucleus exceeds 5, the point is colored in red; otherwise, it is 443 
colored blue. We show a histogram of the distances (Fig. 4b, leftmost panel) and saw that most nuclei 444 
were within one-unit distance away from the Seurat-assigned genome multinomial state.  445 
 To test the utility of the multinomial wheel to detect collisions, we utilized the two mixture 446 
experiments using nuclei from frozen tumor biopsies where the collisions were verified by patient-447 
specific SNPs. In Fig. 4b (second panel from right), we show only the nuclei determined as collisions from 448 
the first mixture experiment between patients 1 and 5. The BAGs judged by SNPs to be collisions usually 449 
reside in the middle of two multinomial states, not close to either one of them (Fig. 4b, second panel 450 
from right). We showed a histogram of their distances to Seurat-assigned clusters with a peak distance 451 
of 4 (Fig. 4b, rightmost panel). Most existing doublets detection methods37-43 for single-cell RNA 452 
sequencing start from the individual count vectors of single cells, and then make artificial doublets by 453 
adding/averaging random droplet pairs and use these to train the model. However, unlike the existing 454 
methods, the multinomial wheel acknowledges the major clusters determined by Seurat UMAP 455 
clustering and then measures the deviation of every cell from the centroids of these major clusters. 456 
Different from “DoubletDecon”44 method which is also based on clustering information but decides if a 457 
droplet resembles artificial droplets based on a deconvolution algorithm45, we assume the multinomial 458 
of a cluster could be viewed as a k-sided die, with each throw of the die landing on a face with a fixed 459 
probability, with probabilities summing to 1. In our context, each face was either a gene (if an 460 
expression multinomial) or a genomic bin (if a genomic multinomial), with its probability determined by 461 
its relative frequency in the cluster of cells. Each cell in the cluster could be considered as the outcome 462 
of N rolls of its multinomial, where N was the count of templates that were observed. This method 463 
works for both DNA and RNA space (Fig. 4b and Supplementary Fig. 19), not only serving as a doublet 464 
detector but also providing quantitative measurements of the cells in between different states.  465 

These experiments justified using the multinomial wheel as a filter and removing the genome 466 
’violators‘ from all BAGs. The violators were nuclei with a distance of ≥2 from their Seurat-assigned 467 
home multinomial states. We plotted all violators from the combined DNA analysis in the respective 468 
DNA and RNA multinomial wheels (Supplementary Fig. 19b). Importantly, the violators of the genome 469 
wheel from the mixing experiment were also violators of the expression wheel (Supplementary Fig. 19c-470 
d). This filtration was stringent, as we removed about 20% of the BAGs, in excess of our expectation of 471 
5% collisions. We then re-tabulated the projections of nuclei that passed the filter (Fig. 4c). In the table 472 
of Fig. 4c, we highlighted the remaining crossovers in red. Filtration reduced crossovers from 357 to 24 473 
for tumor genomes with normal expression, and from 401 to 24 for normal genomes with tumor 474 
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expression. Thus, removing 20% of the BAGs by filtration eliminated greater than 90% of all crossovers. 475 
The alluvial plots for each case before and after violator removal are shown in Supplementary Fig. 20. 476 

One case of note in Fig. 4c was that two nuclei in the adjacent normal tissue of patient 2 477 
(Normal2) showed tumor genomes, and their respective copy-number profiles are exhibited in 478 
Supplementary Fig. 21b. Using multinomial wheel analyses, we found both nuclei were within 1 unit 479 
distance from the same tumor clone T2B, and in RNA space, both were within 1 unit distance from 480 
tumor RNA cluster RNA2a. These two nuclei were not crossovers, but they represented tumor subclone 481 
infiltration into the adjacent normal tissue for patient 2. 482 

Patients 2 and 5 showed the largest number of residual crossovers, and they also had the largest 483 
numbers prior to filtering. We checked all residual crossovers to make sure the Seurat "FindClusters" 484 
assignments agreed with UMAP spatial assignments, and that the individual copy number profiles had 485 
good quality. We plotted the crossovers from Tumor 5 with normal genomes and tumor expression on 486 
the DNA and RNA multinomial wheel in Supplementary Fig. 21c, and the crossovers with tumor 487 
genomes and normal expressions from Tumor 2 in Supplementary Fig. 21d, which gave a clearer 488 
picture. We discuss the biological implication of these remaining crossovers in the next section. 489 

 490 

Discussion  491 
We sought to develop a high-throughput method for the assessment of both RNA and DNA from 492 

individual cells of a population, and to begin to explore its utility in the description of the cellular 493 
composition of primary cancer sites. Our experimental design incorporated four elements. First, we 494 
chose BAG single-cell technology because of its flexibility and excellent performance for either RNA-only 495 
or DNA-only protocols30. Second, we collected both RNA and DNA from individual units at the same time 496 
in a hybrid protocol because this was simpler than trying to capture the two nucleic acid types 497 
sequentially. Third, we chose nuclei over cells because nuclear RNA was sufficient for the classification 498 
of cell types46-48, and isolating intact cells from frozen or fixed biopsy samples is problematic. Finally, we 499 
chose to examine nuclei from one target organ, in this case the uterus, so that we could better assess 500 
the commonality of the stroma and the diversity of tumor expression49. Although this hybrid method, in 501 
its current format, has lower genome coverage per cell than the single-nucleus DNA-only or RNA-only 502 
protocol30, it still shows many advantages over plate-based, low-throughput methods that assess both 503 
DNA and RNA together (Supplementary Table 4). For example, it enables the detection of mutant 504 
stroma existing only in a small proportion of most cell types, which is challenging for low-throughput 505 
methods. This new method not only enables the analysis of many more cells, but also overcomes some 506 
of the challenges imposed by existing techniques, such as high labor intensity, limitation of sample 507 
types, and a preference for entire cells over nuclei alone19,20,50.  508 

At low resolution, we found that the expression clusters of the cancer cells themselves were 509 
quite distinct, well separated from each patient and from the normal clusters. At higher resolution, each 510 
cancer had more than one expression cluster. The relationship between these tumor expression clusters 511 
and the DNA subclonal populations of the cancers was not consistent from patient to patient. In some 512 
cases, cells of distinct tumor subpopulations projected to distinct expression clusters; in some cases, the 513 
cells of distinct subpopulations projected to the same expression cluster; and in some cases, cells from 514 
the same subpopulation "split": they projected to distinct expression clusters. We believe that these 515 
split expression patterns are consistent with epigenetic drift rather than being caused by genetic 516 
variations. We take note of two special cases: in patient 3, the same cancer population projected to 517 
estrogen receptor positive and receptor negative expression clusters; and in patient 1 with uterine 518 
carcinosarcoma, each of two cancer subclones projected to high and low collagen expression clusters. In 519 
both patients 1 and 3, the distinct cancer expression types were physically interspersed as determined 520 
by histopathology. This was consistent with the idea of epigenetic variation, rather than genetic 521 
variation, because we would expect the latter to show physical segregation. 522 
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 Using this multiomic technology, we observed that a significant number of stroma cells lost one 523 
copy of chromosome X. Especially in patient 2, almost half of the plasma cells showed loss of one copy of 524 
chrX, suggesting extensive clonality in this lineage. These observations raise additional questions: does 525 
somatic clonality indicate failure of the immune checkpoint mechanisms? Do these cells hinder or help 526 
the tumor penetrate the host? Do the somatic elements travel with the cancer when it metastasizes?  527 
 Although aneuploid and diploid lineages generally projected to distinct expression clusters, we 528 
initially observed many exceptions that we termed "crossovers." While it would not be surprising to see 529 
early tumor lineages without copy number changes begin to express the tumor pattern, it would be 530 
surprising to see the entire program expressed so early, before the selection within the host for the 531 
predominant tumor clone. Also, if tumor cells can take on the expression pattern of normal cells, they 532 
could possibly escape host surveillance or chemotherapy. Such crossovers could therefore be of 533 
immense interest, provided they are not artifacts. We therefore refined our methods to minimize 534 
possible artifacts. The most likely artifacts are from ‘collisions,’ BAGs that either report multiple nuclei or 535 
with coincidental identifiers. Preparing intentionally mixed samples that were distinguishable by SNVs 536 
enabled us to determine that collisions occurred in about 5% of the BAG data. After removing possible 537 
collisions, the few remaining crossovers merit further future study with larger data sets. Some of these 538 
remaining crossovers might be from an earlier cancer lineage or mutated stroma51-54. 539 
 To better understand "crossovers," we needed a tool for quantifying the similarity of a cell to 540 
others in its cluster. The widely used clustering program in Seurat was effective at finding clusters, 541 
offering a manifest of marker genes that distinguished the clusters, and providing clear graphical 542 
displays. However, the current clustering method failed to detect cells intermediate between clusters 543 
and was highly dependent on parameter settings. We, therefore, experimented with a simpler 544 
mathematical paradigm for clustering, the multinomial distribution and developed the "multinomial 545 
wheel" method to filter the collisions. This multinomial wheel algorithm has extensive utility beyond this 546 
specific case or method. It can assist in any clustering analyses to provide quantitative measurement of 547 
how each single cell fits into each cluster, which would help identify outliers, collisions, and cells in 548 
transition from one state to another in either genomic or transcriptomic space. 549 
 In summary, we have developed a high-throughput multiomic method that connects genotypes 550 
and expression profiles at single-cell resolution. When tumors have copy number changes, it is now 551 
possible to distinguish stromal expression patterns from tumor expression patterns. In exploring five 552 
uterine tumors, we uncovered all possible patterns of connection between tumor subclones and 553 
expression sub-clusters. We saw differences in the proportionate composition by stromal type, and 554 
observed clear evidence of genomic variants in stromal subtypes. How these observations relate to 555 
cancer biology in general, or to the classification of cancer subtypes and their relation to disease 556 
outcome, await more extensive studies. We expect this pilot study opens a window to the complex 557 
relationship between genome and transcriptome, and will lead to new insights into cancer biology, new 558 
methods for monitoring cancer progression and evaluating clinical prospects, and possibly new 559 
treatments.  560 

 561 

Methods 562 
Pulverization of frozen biopsy samples in liquid Nitrogen 563 

All patient tissue biopsy samples were pulverized in Liquid Nitrogen (LN2) with a sterile mortar 564 
and pestle prior to analysis. Mortar and pestles were submerged in LN2 and cooled to LN2 temperature. 565 
The cooled vessels were then partially filled with fresh LN2 and transferred to a basin containing a 566 
shallow pool of LN2. The presence of LN2 in both the mortar and basin helped maintain a constant 567 
temperature during the pulverization process and prevent sample heating due to friction. The tissue 568 
samples were then transferred to the sterile mortar, submerged in LN2, and pulverized until they were 569 
mostly a fine, homogeneous powder. Once pulverized, residual tissue material was scraped off the 570 
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pestle back into the mortar with a sterile, LN2-cooled disposable spatula. The mortar was then removed 571 
from the basin to allow for the LN2 to evaporate out of the mortar. Subsequently, pulverized tissue was 572 
immediately collected with a fresh, sterile, LN2-cooled disposable spatula into 2.0 mL DNA LoBind 573 
Eppendorf tubes submerged in LN2. Pulverized samples were placed on dry ice with the caps open to 574 
allow for temperature equilibration before closing the tubes, and then stored at -80°C until further use. 575 
All samples were pulverized with separate sterile mortar and pestles to avoid cross-contamination 576 
between tumor and normal adjacent biopsy tissues. 577 
 578 
The sample cohort 579 

We studied samples from five patients (patient 1 – patient 5). The samples were from biopsies 580 
of their uterine cancers (Tumor 1 – Tumor 5), and in three patients also from adjacent normal 581 
endometrial sites (Normal 1, Normal 2, and Normal 4). For most samples (Normal 1, Tumor 1, Tumor 2, 582 
Tumor 3, Normal 4, Tumor 4, Tumor 5), we sequenced single nuclei of the same sample on each of three 583 
platforms: DNA-only, RNA-only, and the hybrid protocol. We performed comparison analyses and 584 
showed the validity of the hybrid protocol mainly using the above five trio data sets. 585 
 586 
Hybrid BAG generation 587 
 We dissolved the pulverized tissue in ice-cold NST detergent buffer47 and stained with DAPI. We 588 
performed single-nuclei sorting using DAPI-H vs. DAPI-A single-nuclei gate on a FACSAria II SORP cell 589 
sorter to remove debris and clumps. We confirmed (data not shown) that single-nuclei sorting based on 590 
ploidy would not be able to distinguish cancer cells from normal cells because the hypodiploid peak of 591 
cancer cells often overlaps with the diploid peak of normal cells47. Single nuclei were loaded into the 592 
microfluidic device described in detail in a previous publication30. Nuclei were encapsulated into 593 
droplets with an average diameter of 120 microns. For the capture of nucleic acids, we used 5' Acrydite 594 
oligonucleotides. All the Acrydite-modified oligonucleotides became covalently co-polymerized into the 595 
gel ball matrix. They also all contained, at their 5' end, a universal PCR primer (UP1) for subsequent 596 
amplification. For RNA-only protocol, we used oligo-dT; for DNA-only protocol, we used random T/G 597 
primers, and followed their respective published protocols30. To capture both RNA and DNA together in 598 
the new hybrid protocol, we used both Acrydite primer designs, but we altered the protocol in two 599 
important ways.  600 

The first critical change was an incubation step at 85°C for 5 minutes instead of 95°C for 12 601 
minutes for DNA denaturation in the DNA-only protocol. Otherwise, we observed significant destruction 602 
of the RNA. 603 
 The second critical change took place after the BAGs were formed. The RNA and genomic DNA 604 
trapped in the BAGs were used as templates to make covalently bound copies, and in the new hybrid 605 
protocol, both reverse transcriptase and DNA polymerase were used. Template-switch-oligos were also 606 
introduced in the hybrid protocol so that the cDNA products which were covalently linked to the BAG 607 
matrix ended with a double-stranded region. This double-stranded DNA region included an NLA-III 608 
cleavage site. Subsequently, DNA polymerase (Klenow) was added to extend the captured genomic DNA 609 
from primers, forming a copy that was also covalently linked to the BAGs. Some, perhaps most, of the 610 
cDNA-mRNA sequence was further partially converted to double-stranded cDNA. BAGs were pooled and 611 
the covalently captured DNA and cDNA were cleaved with NLAIII leaving a sticky end used for 612 
subsequent extensions.  613 
 BAG barcodes and varietal tags were added to the 3' ends of the covalently captured nucleic 614 
acids in split-and-pool reactions. The BAG barcodes were present on both the genomic-DNA and RNA 615 
copies. The varietal tags were used for counting. The first BAG barcode and varietal tag were added by 616 
ligation extension (described in detail in the supplementary experimental protocol), leaving a common 617 
3' sequence identical across all the molecules and BAGs. The second BAG barcode and varietal tag were 618 
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added by hybridization extension of the common 3' sequence, along with a second common sequence 619 
adapter for the third split-and-pool step. The third barcode was added by a split PCR, using the first 620 
universal PCR primer (UP1) and the second common sequence adapter as part of the PCR primer 621 
sequences.  622 
 These amplified products were pooled and converted by tagmentation into paired-end Illumina 623 
sequencing libraries. One end of the reads contained BAG barcode and varietal tag, as well as genomic 624 
or transcriptomic sequence information. The other end from random tagmentation was mostly genomic 625 
or transcriptomic sequence information. 626 

 627 
Initial data processing 628 

Sequencing libraries were sequenced in paired-end 150 bp format using an Illumina NovaSeq 629 
6000. Briefly, each processing step is described in more detail in the immediately following sections. We 630 
first checked the structure of each read pair in the fastq files. For the good read pairs with the correct 631 
structure as shown in Fig. 1a, we extracted the BAG barcode, varietal tag, and genomic sequences from 632 
both reads. We then mapped the genomic (including transcriptomic) sequence to the reference genome 633 
with gene transcript information. Finally, we combined the mapping information from all reads 634 
belonging to each varietal tag for each BAG barcode. In the end, we obtained a template data table with 635 
each row containing the information of an original template/molecule. In the following section, we 636 
explain each processing step from the fastq file to the template table in detail. 637 

 638 
Step 1 – Check sequence structure 639 

First, we filtered out reads from the fastq files where either Read 1 or Read 2 were less than 100 640 
bases. Second, we examined if the sequences from the expected BAG barcode positions exactly matched 641 
one of the 96×96×96 barcodes, and if the "CATG" cutting site was in the expected location, allowing for 642 
one base mismatch. We removed read pairs that did not satisfy these requirements. Third, from Read 1 643 
which started with barcodes and varietal tags, we trimmed away the first 80 bases containing the BAG 644 
barcode, varietal tag, and adapter sequences, and also checked if the reverse complementary sequence 645 
of the universal primer ("CCAAACACACCCAA") or oligo-dT ("AAAAAAAAAAAAAA") was present. If 646 
present, it meant we had reached the end of the template, so these primer-related sequences were 647 
trimmed off for downstream mapping. Similarly, for Read 2, the tagmentation end, we checked and 648 
removed the adapter sequence ("GAGCGGACTCTGCG") from the first split-and-pool if it existed. After 649 
trimming, we required both Read 1 and Read 2 to be at least 30 bases long. All the bases from Read 1 650 
and Read 2 after trimming were then used for paired-end mapping (Step 3). 651 

 652 
Step 2 – Extract BAG barcode and varietal tags 653 

If a read pair passed Step 1, we extracted the BAG barcode and varietal tag information from the 654 
first 80 bases of Read 1, and this information was appended to the read ID. The 17 base BAG barcodes 655 
came from three cycles of the split-and-pool procedure, of which five bases came from the 1st-split, six 656 
bases came from the 2nd-split, and six bases came from the 3rd-split. There were 96 different barcodes 657 
for each split, so there were altogether 96×96×96 (≈ 1 million) varieties. The 12 base varietal tag came 658 
from both the split-and-pool primers and the genomic sequence. Out of these twelve bases, four bases 659 
came from the 1st-split, four bases came from the 2nd-split, and four bases came from the genomic 660 
sequence that was two bases away from the "CATG" cutting site. These twelve bases provide 412 (≈ 16 661 
million) varieties for each BAG.  662 

 663 
Step 3 – Map to the human genome  664 

After steps 1 and 2 above read pairs were mapped to the UCSC hg19 human genome using 665 
HISAT2 version 2.1.031. The reference genome we used included the primary chromosomes and 666 
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unlocalized and unplaced contigs. Alternate haplotypes were not included in the genome index. HISAT2 667 
can take a file with known splice sites to use for alignment. This file was generated using a gtf formatted 668 
file extracted from the NCBI refSeq gene annotation table from the UCSC genome browser and the 669 
HISAT2 program, hisat2_extract_splice_sites.py. The bam files were then sorted and indexes using 670 
samtools. In subsequent data analysis steps we designate by mapped reads the reads that HISAT2 marks 671 
as being part of a proper pair and a primary mapping having a read mapping quality score greater than 672 
zero. 673 

 674 
Step 4 – Combine read information with original template information 675 

We grouped the mapped reads based on their BAG barcodes. For the reads with the same BAG 676 
barcode, we sorted the varietal tags by the number of reads associated with each tag in descending 677 
order. We performed a "rollup" algorithm on the sorted varietal tags, and discarded varietal tags within 678 
a Hamming distance of one from a more abundant varietal tag having at least ten times more reads. We 679 
assumed the eliminated varietal tags originated from the tags with more abundant reads but contained 680 
sequencing or PCR errors.  681 

Using the varietal tags from the above "rollup" step, we aggregated the mapped segments for all 682 
the reads with the same varietal tag. We checked the total coverage of each varietal tag against all 683 
exons and transcript boundaries from the NCBI refSeq gene annotation file downloaded from the UCSC 684 
genome browser, and wrote out one line per varietal tag with all the useful information into a "template 685 
table". Each line of the template table contains the following information: BAG barcode, varietal tag, 686 
chromosome, start mapping position, end mapping position, start and end mapping position for each 687 
fragment if there was more than one continuous fragments, total bases covered by this template, 688 
number of reads, number of genes, gene list, bases overlapping with the transcript of the best-matched 689 
genes, bases overlapping with exons, number of splice junctions, number of unspliced sites, bases 690 
overlapping with the coding regions, 5'UTR, and 3'UTR of the gene. The downstream data analyses were 691 
mainly based on the information from this table.  The best-mapped gene was deemed to be the gene 692 
from the annotated transcript file having the highest overlap to the transcript. If more than one 693 
transcript had the same overlap then best was determined by overlap to exons, then overlap to coding 694 
sequence, then the number of splice junctions, then the fewest unspliced sites. If more than one gene 695 
tied for all these criteria, then all genes are listed in the template table. 696 

 697 
Template processing 698 
Sequence classification 699 

Starting from the template data table described above, each initial molecule was classified as 700 
one of the four categories: "Exonic"," Intronic", "Intergenic", and "Uncategorized". This process was 701 
applied uniformly regardless of the protocol types (RNA-only, DNA-only, or hybrid). We classified a 702 
template as an "Exonic" template if over 90% of its bases were mapped within one gene. Furthermore, 703 
we refined the "Exonic" classification only if 50% or more covered bases from this template were exonic, 704 
or if 20% or more covered bases were exonic and at least one splicing event was observed (RNA layer). If 705 
all the bases from a template were mapped to intergenic regions, we classified it as "Intergenic". If a 706 
template was not classified as "Intergenic", but less than 10% of its covered bases were exonic and no 707 
splicing events were observed, this template was classified as "Intronic". Only a small proportion of 708 
templates failed to be classified into the above three categories, and these templates were classified as 709 
"Uncategorized". 710 

For expression clustering, we only used "Exonic" templates assigned to a single gene regardless 711 
of protocols. For copy number clustering, we tested four versions of template choices on all the libraries, 712 
and presented the comparative results on the two normal tissue samples (Normal 1 and Normal 4) in 713 
Supplementary Fig. 3, which we will discuss in the next section.  714 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560973doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560973
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

 715 
Copy number plot varieties 716 

We demonstrated four progressively improved versions of copy number estimation, named 717 
"all_molecules", "no_exon", "no_gene", and "no_gene.avoid50closeTN". The method "all_molecules" 718 
simply used all molecules for each retained nucleus for copy number as the name would imply. The 719 
method "no_exon" used molecules both classified as "Intronic" and "Intergenic" in the previous 720 
paragraph. The method "no_gene" only used "Intergenic" templates with no bases covering a transcript.  721 

The method "no_gene.avoid50closeTN" (DNA layer) only retained the "Intergenic" molecules 722 
from the "no_gene" method that were at least 50 bases distant from RNA hotspots. We defined an RNA 723 
hotspot as the genomic region between two "Intergenic" templates that were within 50 bases of each 724 
other in RNA-only libraries from all tumor and normal samples in the cohort. RNA hotspots were 725 
expected to be some combination of actual unannotated transcripts and regions of DNA that were 726 
prone to being copied by reverse transcriptase. As these hotspot sequences distorted copy number 727 
profiles in normal and tumor biopsy specimens, we eliminated certain intergenic regions when 728 
determining copy number profiles for the hybrid protocol.  729 

 730 
Empirical bin boundary generation for copy number 731 

Separately for each of the four copy number molecule selection methods above, we used the 732 
genomic positions of all molecules from normal DNA samples to determine empirical bin boundaries for 733 
300 bins with approximately equal molecule counts per bin. Excluding any molecules mapping to 734 
chromosome Y, we assigned to each chromosome 1-22 and X a number of bins in proportion to its 735 
fraction of total molecule counts. Within each chromosome, bin boundaries were assigned greedily from 736 
the start of the chromosome so that all but the final bin contained at least the same number of 737 
molecules that was equal to the total counts of molecules (or referred to as templates) divided by the 738 
number of bins for that chromosome. The observed count of molecules per bin was recorded as a 739 
normalization factor for later use during per-sample copy number estimation. This normalization factor 740 
could vary by up to 30% between chromosomes because a small number of bins (300) can only be 741 
imperfectly allocated by chromosomal molecule counts. 742 

 743 
Copy number estimation 744 

For each copy number variant separately, each selected molecule incremented a bin based on 745 
the established bin boundaries for that method. Each bin count was then divided by the per-bin 746 
normalization factor, and the result was multiplied by 2 divided by the median value over all bins. 747 
Assuming a mostly diploid sample, this process resulted in a copy number profile for the sample that 748 
was centered at a value of 2. Circular binary segmentation (DNAcopy version 1.50.1)55 in R was then 749 
performed on the copy number profile using parameters alpha=0.02, nperm=1000, undo.SD=0.5 and 750 
min.width=2. For each profile, we also computed a quantity we call 'terrain' which was the sum of the 751 
absolute value of adjacent bin copy number differences. To produce copy number input for the 752 
"CreateSeuratObject" function of Seurat, the per-bin normalization factor was applied to each raw bin 753 
count for each cell, and a second per-cell normalization factor was then used so that each cell's total 754 
normalized count was set equal to its total unnormalized count.  755 
 756 
RNA clustering 757 

The RNA clustering was performed using Seurat package (version 3.1.5), and using the standard 758 
Seurat clustering pipeline56. The gene names were also appended with the chromosome information to 759 
distinguish any ambiguous locations. We removed the ribosomal protein genes for clustering. For 760 
comparing expression clustering between the hybrid protocol and RNA-alone protocol, we normalized 761 
the gene-template matrix by cell, and removed the PCA components that most significantly 762 
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distinguished protocol differences. We normally used at least 15 PCA components for clustering. This 763 
approach gave us similar clustering results as the "IntegrateData" function in Seurat v4. For the 764 
combined RNA clustering of all the hybrid data, we downsampled the gene matrix to 400 Exonic 765 
templates per nucleus, and included nuclei with more than 300 Exonic templates for clustering. In the 766 
clustering process, we only used genes that showed up in at least 30 nuclei, and nuclei with at least 150 767 
genes; we used the top 5,000 variable gene features for PCA analysis and used the first 50 PCA 768 
components for subsequent UMAP and FindCluster functions. 769 

 770 
Copy number clustering  771 

Similar to RNA clustering, we used "RunUMAP" and "FindClusters" functions of Seurat to cluster 772 
nuclei based on copy number. For each library, we had a bin-counts matrix, similar to the gene matrix 773 
for RNA clustering. There were 300 rows in the matrix, representing 300 genomic bins. Each column 774 
represented a nucleus. Each element of the 2D matrix represented the tag counts of the corresponding 775 
bin in the corresponding nucleus. We first normalized the matrix by columns: for each nucleus, we 776 
divided each bin count by the mean of 300 bins and then multiplied by 2. We not only used these 300 777 
normalized single bin counts for clustering; additionally, we also included the median normalized bin 778 
counts of every two and three adjacent bins, as long as these adjacent bins were within the same 779 
chromosome. The reason for this step was that copy number segmentation usually requires similar 780 
amplification or deletion patterns in at least two contiguous bins. By doing this, we appended another 781 
277 rows from the two adjacent bins and 254 rows from the three adjacent bins onto the original 300-782 
row normalized bin-count matrix.  783 

We performed clustering using the new matrix with 831 rows. We used a workflow similar to 784 
that for RNA clustering, but we did not use "NormalizedData" function since the matrix had already 785 
been normalized. For “FindVariableFeatures” function, we used the top 500 features by inputting 786 
“selection.method = “vst”, nfeatures = 500”.  787 
 788 
Copy number heatmap 789 

The single-nucleus copy-number heatmap was plotted using Seurat "DoHeatmap" function. Each 790 
row represented the median normalized counts of two adjacent bins, except for the first bin of each 791 
chromosome, in which we used the normalized count of that single bin. The total of 300 rows were 792 
sorted in genomic order, with chromosome Y eliminated. 793 
 794 
Multinomial Wheel 795 

To build a multinomial wheel in DNA space, we first computed a multinomial vector to represent 796 
each Seurat cluster. Each multinomial vector had 300 elements, representing 300 genomic bins. Each 797 
element was the total bin counts from all the nuclei in that cluster. We normalized each vector to sum 798 
to one, serving as the multinomial probability vector representing that cluster. Next, we computed the 799 
linear combination of multinomial probability vectors of every two Seurat clusters, and created 9 equally 800 
spaced sampling states 𝐶𝐶1,2,…,9 = 𝑝𝑝𝑝𝑝 + (1 − 𝑝𝑝)𝐵𝐵, for p = (0.1, 0.2,…, 0.9), where A and B are the two 801 
original states. We then assigned the nucleus to the state with the highest likelihood. In R language, we 802 
used the "dmultinom" function to compute multinomial probabilities.  803 

We applied a similar idea to create the RNA multinomial wheel. Different from the DNA 804 
multinomial vector where each element was a genomic bin, in RNA space, each element represented 805 
one of the 29,637 genes. We computed the sum of gene counts for each Seurat cluster 𝑉𝑉1,2,…,𝑛𝑛 (n is the 806 
number of Seurat clusters, and 𝑉𝑉𝑖𝑖  is a 29,637-element vector, 𝑖𝑖 = 1,2, … , n), but unlike DNA, there were 807 
many elements still being zero which could not be used as a multinomial probability vector. We solved 808 
the problem by adding a small value to each element that was proportional to the total expression level 809 
of every gene, so that each vector 𝑉𝑉𝑖𝑖∗ does not contain zero elements. For each gene element j, we did 810 
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the following transformation:  𝑉𝑉𝑖𝑖∗[𝑗𝑗]  =  𝑉𝑉𝑖𝑖[𝑗𝑗] + �0.05 × (∑ 𝑉𝑉𝑖𝑖[𝑗𝑗])𝑗𝑗 � × (∑ 𝑉𝑉𝑖𝑖[𝑗𝑗])𝑖𝑖 ÷ (∑ 𝑉𝑉𝑖𝑖[𝑗𝑗])𝑖𝑖,𝑗𝑗 . We then 811 
normalized each vector 𝑉𝑉𝑖𝑖∗ to obtain the multinomial probability vector for cluster i. 812 
 813 
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Supplementary Table 1 to Supplementary Table 4 816 
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Fig. 1. Overview and basic performance of the single-nucleus/cell hybrid sequencing protocol to 
simultaneously capture and analyze the genome and transcriptome. a, Workflow showing the major steps 
of the single-nucleus/cell hybrid protocol. b-c, Doublets ra�o (1.39% out of 1299 nuclei) (b) and 
cross-contamina�on level (0.2% mouse templates in human nuclei and 0.5% human templates in mouse 
nuclei) (c) from the other species of a HEK293-3T3 nuclei mixture experiment. d-k, Performance and 
genome-transcriptome correla�on from a SKN1-SBKR3 mixture single-cell hybrid sequencing experiment; 
total unique molecules (d), exonic templates (e), and gene counts per cell (f); clustering based on DNA copy 
number (g) and copy number heatmap (h); clustering based on gene-count matrix (k) and heatmap of 
marker genes (j), and the correla�on between two genomic clusters and two expression clusters (i). 

polyacrylamide
mesh

UP1 capture
primer

CATG

gDNA/cDNA

spacer

GTAC
varietal
tag1

BAG
barcode1

5’

varietal
tag2

BAG
barcode2

BAG
barcode3

UP2 5’

1st split-pool
2nd split-pool

3rd split-pool

collapse reads with the same tag into templates

RNA templates
Within one gene boundary 

 

>50% overlap with exons  
OR cover splice junc�ons

DNA templates 
Only mapped to intergenic regions

Ampli�cation, Tagmentation,  and Sequencing

Partitioning templates

Split-pool

Capture,
Extension

0 10000 20000 30000

0
10

00
0

20
00

0

Mixture experiment of HEK293 and 3T3 nuclei

Human(HEK293) UMIs per nucleus 

M
ou

se
(3

T3
) U

M
Is

 p
er

 n
uc

le
us

(doubles ra�o: 18/1299 = 1.39%)  

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

Human

Mouse

Contamina�on from the other species

Mouse contamina�on

Human contamina�on

DNA.cluster RNA.cluster

SKBR3
DNA

SKBR3
RNA

SKN1
DNA

SKN1
RNA

SKN1
SKBR3

chr1.S100A9
chr11.H19

chr11.HOTS
chr19.MUC16

chr17.RPL19
chr12.KRT18

chr12.KRT8
chr14.DHRS2
chr17.ERBB2

chr17.JUP
chr15.THBS1

chr2.FN1
chr10.VIM

chr17.COL1A1
chr15.GREM1

chr7.FLNC
chr2.COL6A3

chr21.COL6A1
chr7.COL1A2

chr17.CAVIN1

-1

0

1

2

Expression

SKBR3

SKN1

-5

0

5

-15 -10 -5 0 5 10 15

UMAP_1

U
M

AP
_2

SKN1
SKBR3

SKBR3

SKN1

chr1

chr2

chr3

chr4

chr5

chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr16
chr18
chr20
chr22
chrX

0

1

2

3

4
Copies

SKBR3

SKN1

-10

-5

0

5

10

-5 0 5 10
UMAP_1

U
M

AP
_2

SKN1
SKBR3

SK
BR3

SK
N1

SK
BR3

SK
N1

SK
BR3

SK
N1

Total unique molecules per cell Unique Exonic molecules per cell Unique genes per cell

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560973doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560973
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNA1a

RNA1b

EP

chr15.THBS1
chr12.VWF
chr8.SULF1

chr2.COL3A1
chr9.EGFL7

chr20.SIGLEC1
chr5.DAB2

chr11.SLCO2B1
chr5. CSF1R
chr3.STAB1

chr11.MS4A7
chr14.FOS
chr1.MUC1

chrX. LRCH2
chr19.MUC16

chr11. PGGHG
chr1.PIK3CD
chr2.NPAS2
chr11.LRP4

chr18.MALT1
chr20. RSPO4
chr12.DUSP6

chr12.COL2A1
chr11.FAT3

chr9.COL27A1
chr1.COL9A2
chr4. FGFR3

RNA1a(High COL)
RNA1b(Low COL)
EP
Macrophage

0

1

2

Expression

T1A
T1B N

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8
chr9

chr10
chr11
chr12
chr13
chr14

chr16
chr18
chr20
chr22

chrX

0

1

2

3

4
Copies

T1A
T1B
N

Mac
rophag

e

RNA2a

Mono
T ce

lls
RNA2b

 

EP Plas
ma c

ells

chr14.IGHG1
chr11.POU2AF1

chr1.FCRL5
chr2.ANKRD36BP2

chr7.CFTR
chr20.CYP24A1

chr3.MUC4
chr11.MUC5B

chr12.VWF
chr13.FLT1

chr22.SHANK3
chr9.EGFL7

chr2.COL3A1
chr5.PDGFRB
chr9.COL5A1

chr8.SULF1
chr14.AHNAK2

chr18.ALPK2
chr2.KIF1A

chr3.CLDN1
chr17.ITGAE

chr12.CLEC2D
chr11.MYO7A

chr22.MIAT
chr5.CSF1R

chr10.RASSF4
chr20.SIGLEC1

chr1.GLUL
chr1.ATF3

chr17.TMEM101
chr12.RIMKLB

chr18.LINC01541 Identity

RNA2a 
Mono 
T cells  
RNA2b 
Fibroblast 

EC

EP 

Plasma cells

-0.5
0.0
0.5
1.0
1.5
2.0
2.5

Expression

EC

UMAP_1

U
M

A
P_

2

RNA2b

 T cells

RNA2a

Plasma cells

Mono

EP

EC

Transcriptome

EP

Macrophage

RNA1a(High COL)

RNA1b(Low COL)

UMAP_1

U
M

A
P_

2

T1B

T1A

N

UMAP_1

U
M

A
P_

2

DNA layer of the hybrid protocol 

Genome Transcriptome
Tumor 1

Tumor 2

T3 N

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8
chr9

chr10
chr11
chr12
chr13
chr14

chr16
chr18
chr20
chr22

chrX

0

1

2

3

4
Copies

T3
N

RN
A

RN
A3b(ER-)

DC Fib
roblas

VEC
L mphs

LE
C

chr15.CEMIP
chr4.SPRY1

chr5.FLT4
chr22.TBX1

chr5.ADAM19
chr2.ANKRD44

chr2.CXCR4
chr10.WDFY4

chr2.HOXD9
chr6.NOTCH4

chr19.INSR
chr9.EGFL7

chr2.COL3A1
chr5.PDGFRB
chr3.ABI3BP
chr2.COL6A3

chr1.RGS1
chr11.SLCO2B1
chr20.SIGLEC1

chr16.ITGAX
chr2.LINC00342

chr12.KRT7
chr5.CCL28

chr2.TFCP2L1
chr11.MUC5B

chr1.MEX3A
chr11.MYRF
chr12.RESF1

chr6.ESR1

 
RNA3b(ER-) 
DC  

 
VEC  

 
LEC

0

1

2

Expression

RNA3b(ER-)

DC

LEC

VEC

UMAP_1

U
M

A
P_

2

T3

N

UMAP_1

U
M

A
P_

2

T4A
T4B N

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8
chr9

chr10
chr11
chr12
chr13
chr14

chr16
chr18
chr20
chr22

chrX

0

1

2

3

4
Copies

T4A
T4B
N

RNA4a(m
ain

)

RN
A4b

DC Fib
roblas

RN
A4c(d

ivi
ding)

EC EP

chr17.ITGB4
chr19.C3

chr3.CP
chr19.MUC16

chr2.PAX8
chr13.FLT1

chr22.SHANK3
chr12.VWF

chr12.PTPRB
chr9.EGFL7

chr10.ZNF503
chr2.ADAM17

chr1.ZNF281
chr10.MKI67

chr15.ITGA11
chr10.ACTA2
chr14.MEG3

chr5.PDGFRB
chr15.TPM1
chr1.PTPRC
chr5.CSF1R

chr4.GPRIN3
chr11.SLCO2B1

chr2.SLC11A1
chr1.RGS1

chrX.TMSB4X
chr6.MARCKS
chr17.ACTG1

chr2.PTMA
chr1.NUCKS1
chr6.EEF1A1

chr7.ACTB
chr15.GOLGA8B

chr9.RMRP
chrX.TRO

chr5.CPLANE1
chr2.FSIP2

0

1

2

Expression

Identity
RNA4a(main)
RNA4b
DC
Fibroblas
RNA4c(dividing)
EC
EP

UMAP_1

U
M

A
P_

2

RNA4a(main)

DC

EC

RNA4b

EP

RNA4c(dividing)

UMAP_1

U
M

A
P_

2

N

T4A

T4B

T5A
T5B N

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8
chr9

chr10
chr11
chr12
chr13
chr14

chr16
chr18
chr20
chr22

chrX

0

1

2

3

4
Copies

T5A
T5B
N

RN
A5a

RNA5b

EC RN
A5c

chr18.NFATC1
chr14.JDP2
chr2.RUFY4

chr11.SLC37A2
chr20.MMP9

chr14.CKB
chr16.KIF22

chr12.CIT
chr15.NUSAP1

chr17.KIF18B
chr10.MKI67
chr1.IQGAP3

chr5.AFAP1L1
chr13.FLT1
chr19.INSR
chr12.VWF

chr6.NOTCH4
chr9.EGFL7

chr11.MS4A7
chr12.CD163
chr1.FCGR2A

chr11.SLCO2B1
chr20.SIGLEC1

chr3.STAB1
chr16.ZNF469

chr8.CCN4
chr2.FN1

chr8.ZFHX4
chr10.ADAM12

chr1.FAM78B
chr20.ZBTB46
chr17.PLXDC1
chr9.COL15A1
chr1.MTMR11

chr11.TNNT3

0

1

2

Expression

RNA5a
RNA5b
Macrophage
EC
RNA5c

UMAP_1

U
M

A
P_

2

RNA5c(dividing)
RNA5b

RNA5a

Macrophage

EC

UMAP_1

U
M

A
P_

2

T5BN

T5A

Genome Transcriptome

Genome Transcriptome

Genome Transcriptome

Tumor 3

Tumor 4

Tumor 5 

DNA layer of the hybrid protocol 

DNA layer of the hybrid protocol 

DNA layer of the hybrid protocol 

DNA layer of the hybrid protocol 

T1A

T1B

N

EP

Macrophage

DNA cluster RNA cluster

Fibroblast+EC

RNA1a
(High COL)

RNA1b
(Low COL)

T3

N

DC

VEC
LEC

DNA cluster RNA cluster

Fibroblast
Lymphs

 RNA3b
 (ER-)

 RNA3a
 

T4A

T4B

N EC
EP

DNA cluster RNA cluster

RNA4b
RNA4c

DC
Fibroblast

RNA4a
(main)

T5A

T5B

N

Macrophage

EC

Megakaryocyte

DNA cluster RNA cluster

RNA5a

RNA5b

RNA5c
(dividing)

RNA layer of the hybrid protocol 

RNA layer of the hybrid protocol 

RNA layer of the hybrid protocol 

RNA layer of the hybrid protocol 

RNA layer of the hybrid protocol 

Fig. 2. 
a-e

(middle panel).

Mac
rophag

e

N Nx T2A
T2B

T2C
T2D

UMAP_1

U
M

A
P_

2

T2C

T2A

T2B
Nx

T2D

N

Genome

chr1

chr2

chr3

chr4

chr5

chr6
chr7
chr8
chr9

chr10
chr11
chr12
chr13
chr14
chr16
chr18
chr20
chr22
chrX

Identity

0

1

2

3

4
Copies

N
Nx
T2A
T2B
T2C
T2D

T2A

T2B

T2C
T2D
Nx

N

T cells

Mono

EC
EP

Plasma cells

RNA clusterDNA cluster

Fibroblast

RNA2b

RNA2a

a

b

c

d

e

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2023. ; https://doi.org/10.1101/2023.10.04.560973doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.04.560973
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNA1

Fibroblast

Mono

EP

VEC

LEC

RNA5

RNA4

RNA3

RNA2b

T cells

RNA2a

Clec9A+ DCs Plasma cells

Tumor genome (T)
Normal genome (N)

UMAP1

U
M
A
P2

UMAP1

U
M
A
P2

UMAP1

U
M
A
P2

UMAP1

U
M
A
P2

UMAP1

U
M
A
P2

UMAP1

U
M
A
P2

Tumor tissue of Patient 4

Combined DNA clustering

Normal tissue of Patient 1        Tumor tissue of Patient 5 Tumor tissue of Patient 1

Tumor tissue of Patient 2 Tumor tissue of Patient 3

T1

N

T2A

T5A
T2C

Nx

T2BT2D

T5B

T3

T4

-5

0

5

10

15

-10 -5 0 5 10
UMAP_1

U
M

AP
_2

RNA1

Fibroblast

EP

VEC

LEC

RNA5

RNA4

RNA3

RNA2b

T cells

RNA2a

Plasma cells

RNA1

Fibroblast

EP

VEC

LEC

RNA5

RNA4

RNA3

RNA2b

T cells

RNA2a

EP

EP-T1

RNA1

RNA2b

T cells

RNA2a

Fibroblast

EP-N1
RNA4

VEC

RNA5

LEC

RNA3

RNA1

Fibroblast

EP-T1

EP

VEC

LEC

RNA5

RNA4
EP-N1

RNA3

RNA2b

T cells

RNA2a

RNA1

Fibroblast

Macrophage

EP

VEC
LEC

RNA5

RNA4

RNA3

RNA2b

T cells

RNA2a

Plasma cells

Tumor genome (T)
Normal genome (N)

DC

Tumor genome (T)
Normal genome (N)

Plasma cells

Megakaryocyte

Tumor genome (T)
Normal genome (N) Normal genome (N)Tumor genome (T)

Normal genome (N)

Macrophage

Plasma cells

Other people Other people Other people

Other people Other peopleOther people

a
Sample Source of All Hybrid Data

Pa�ent1
(4867)

Pa�ent2
(15390)Pa�ent3

(3404)

Pa�ent4
(6843)

Pa�ent5
(4865)

sample
source

Normal1
(1170)

Normal2
(1472)

Tumor3
(3404)

Normal4
(2954)

Tumor5-1
Tumor1

Tumor2
(13918)

Tumor4
(3889)

Tumor5-2
(4026)

(839)
(3697)

Fig. 3. RNA and DNA clustering using a combina�on of all nuclei from the hybrid protocol, 
dis�nguishing largely common stromal and dis�nct tumor clusters. 
a, Combined RNA clustering using all nuclei from the hybrid protocols and 3,500 nuclei from seven 
DNA-only libraries. A zoomed plot in the same figure, circled by dash line, presents the subtypes of 
white blood cells when clustered separately. b, Combined DNA clustering a�er removing nuclei 
clustered to the “garbage” RNA state in (a). c, The sample sources of nuclei from the hybrid protocol 
in the combined analyses. d-i, The projec�ons of tumor-genome (blue) and normal-genome (red) 
nuclei into the RNA UMAP space for six biopsy samples. The tumor-genome or normal-genome 
informa�on is determined by the combined DNA analysis in (b); d, Tumor2; e, Tumor3; f, Tumor4; g, 
Tumor5; h, Tumor1; i, Normal1; in h-i, Unique stromal components are circled in dashed lines and 
indicated by arrows.
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Tumori_N means nuclei from the tumor �ssue of pa�ent i (Tumori) with normal genome (_N).
Normalj_T means nuclei from the adjacent normal �ssue of pa�ent j (Normalj) with tumor genome (_T).

All nuclei from hybrid protocol Collisions from mixture experiment
between patient 1 and patient 5

Fig. 4. Mul�nomial wheel analyses quan�fying the devia�on of each cell to the major clusters and 
removing most of the cross-overs. 
a, The projec�on of normal-genome (_N) or tumor-genome (_T) nuclei from each biopsy sample into 
RNA clusters based on clustering results in panels (a) and (b) of Fig. 3. b, We show the most-likely 
posi�on for each nucleus on the DNA mul�nomial wheel based on the mul�nomial analysis (second 
panel from the le�), and display in histogram the distance between the mul�nomial-wheel assignment 
and the Seurat assignment for all nuclei (first panel from the le�). In addi�on, in the second panel from 
the right, we only show the nuclei with mixed iden��es (collisions) from the first mixture experiment 
of Tumor 1 and Tumor 5 on the same DNA mul�nomial wheel, and display in histogram the distance 
between the mul�nomial-wheel assignment and the Seurat assignment for all collisions (first panel 
from the right). c, The projec�on table in (a) a�er removing the suspected collisions which are 
between 2 and 10 units away from the major clusters .
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Normal1_N_2chrX 5 4 1 1 241 109 7 5 182
Normal1_N_1chrX 17 (6.6%) 4 1
Tumor1_N_2chrX 39 2 1 6 17 2 1 1 40
Tumor1_N_1chrX 1

Normal2_N_2chrX 23 21 2 2 385 103 10 392
Normal2_N_1chrX 1 2 5 1 6 
Tumor2_N_2chrX 1119 2130 88 221 613 319 34 406 1 2
Tumor2_N_1chrX 23 (2.0%) 104 (4.7%) 4 149 (40.3%) 16 (2.5%) 4 2 
Tumor3_N_2chrX 212 29 31 10 76 35 17 3 2
Tumor3_N_1chrX 2 1 1 1 

Normal4_N_2chrX 61 112 36 286 508 222 16 90 2
Normal4_N_1chrX 20 (15.2%) 15 (5.0%) 13 (2.5%) 3 1 1 
Tumor4_N_2chrX 41 4 3 3 36 50 2 2
Tumor4_N_1chrX 1 1 3 1 
Tumor5_N_2chrX 897 56 2 12 209 2 1 40
Tumor5_N_1chrX 11 (1.2%) 2 1 

The projec�on of normal-genome nuclei with 2 or 1 copy of chrX onto stroma cell types

Normali_N_2chrX means the adjacent normal �ssue from pa�ent i (Normali) with normal genome (_N) with both copies of chrX (_2chrX). 
Tumorj_N_1chrX means the tumor �ssue from pa�ent j (Tumorj) with otherwise normal genome (_N) but only one copy of chrX (_1chrX).
Nuclei with tumor DNA genome are not shown in this table.

Table 1. The projec�on of normal-genome cells with two or one copy of chrX into stromal expression clusters.
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