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SUMMARY

Identification of complex molecular networks under-
lying common human phenotypes is a major chal-
lenge of modern genetics. In this study, we develop
a method for network-based analysis of genetic
associations (NETBAG). We use NETBAG to identify
a large biological network of genes affected by rare
de novo CNVs in autism. The genes forming the
network are primarily related to synapse develop-
ment, axon targeting, and neuronmotility. The identi-
fied network is strongly related to genes previously
implicated in autism and intellectual disability pheno-
types.Our results are alsoconsistentwith thehypoth-
esis that significantly stronger functional perturba-
tions are required to trigger the autistic phenotype
in females compared tomales. Overall, the presented
analysis of de novo variants supports the hypothesis
that perturbed synaptogenesis is at the heart of
autism. More generally, our study provides proof of
the principle that networks underlying complex
human phenotypes can be identified by a network-
based functional analysis of rare genetic variants.

INTRODUCTION

The ongoing revolution in genomic and sequencing technologies

has allowed researchers to routinely perform genome-wide

association studies (GWAS) for multiple common human

diseases and phenotypes (Frazer et al., 2007; Hardy and

Singleton, 2009). Although these studies have successfully iden-

tified hundreds of significant associations, common polymor-

phisms reaching genome-wide significance usually explain

a relatively small fraction of disease heritability (Goldstein,

2009). There is a growing consensus in genetics that the most

valuable contribution of GWAS studies will be in the identification

of functional pathways underlying the observed phenotypes

(Hirschhorn, 2009). In addition, it is likely that a significant frac-

tion of so-called missing heritability (Manolio et al., 2009), which

has eluded association studies, is accounted for by rare single
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nucleotide mutations and structural genomic variations (McClel-

lan and King, 2010).

A notable example of a disease with a very complex allelic

architecture is autism—one of the most common neurological

disorders (Geschwind, 2008). Autism spectrum disorders are

characterized by impaired social interactions, abnormal verbal

communication, restricted interests, and repetitive behaviors.

Due in part to better detection strategies, the combined preva-

lence of ASD has been steadily increasing for several decades

and is nowapproachinga staggering1% in the humanpopulation.

Although autism has a very strong genetic component, with an

estimatedheritability ashighas90%basedonstudies ofmonozy-

gotic twins (Hyman, 2008), GWAS-based searches have impli-

catedonlya fewgenes that are associatedwithcommonpolymor-

phisms reaching genome-wide significance (Wang et al., 2009;

Weiss et al., 2009). In addition, the agreement between published

findings remainspoor (Manolio et al., 2009) andunderlyinggenetic

determinants for this disease still remain largely unknown. Impor-

tantly, there isgrowingevidence that rare sequencemutationsand

de novo copy number variations (CNVs) (Marshall et al., 2008;

Moessner et al., 2007; Pinto et al., 2010; Sebat et al., 2007) signif-

icantly contribute to autism etiology (Zhao et al., 2007).

The main challenge in the analysis of rare genetic variations,

such as de novo CNVs, is precisely their rarity, i.e., the fact

that a vast majority of the observed genetic events are unique.

Consequently, each rare variant by itself is not statistically signif-

icant, so an integrative conceptual framework is required to

understand their overall functional impact. We hypothesized

that recently obtained genome-wide de novo CNV data (Levy

et al., 2011) could allow identification of the underlying biological

pathways and processes if considered in the context of func-

tional biological networks (Feldman et al., 2008; Iossifov et al.,

2008). Here, we develop a method for network-based analysis

of genetic associations (NETBAG) and demonstrate its utility in

autism. The presented approach can determine whether the

observed rare events en masse affect a significantly intercon-

nected functional network of human genes.

RESULTS

NETBAG Method Overview
To implement our approach, we first built a background network

that connects any pair of human genes with a weighted edge
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Figure 1. Outline of the NETwork-Based Analysis of Genetic Associations (NETBAG), the Method Used in Our Study to Identify Significant

and Functionally Related Gene Networks Affected by De Novo CNV Events

(A) A background network of human genes is constructed in which nodes indicate genes and edges represent the likelihood that two genes participate in the same

genetic phenotype.

(B) One or two genes are selected from each of de novo CNV region to form a cluster. The genes are mapped to the likelihood network and a combined score is

calculated for each cluster based on interactions between its genes.

(C) A greedy search procedure is used to identify the cluster with maximal score.

(D) The significance of the cluster with maximum score is determined by comparing it to the distribution of maximal scores from randomly selected genomic

regions with similar gene counts.

See Figure S1 for a further description of the NETBAG approach.
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encapsulating our a priori expectation that the two genes partic-

ipate in the same genetic phenotype (see Experimental Proce-

dures and Supplemental Experimental Procedures). This back-

ground network was based on a combination of various

functional descriptors, such as shared gene ontology (GO) anno-

tations (Ashburner et al., 2000), functional pathways in KEGG

(Kanehisa and Goto, 2000), shared interaction partners and

coevolutionary patterns (see Experimental Procedures). Similar

methods have been previously used to build functional networks

in humans and several model organisms (Lee et al., 2004, 2008).

In contrast to the aforementioned studies, edges in our network

represent the likelihood that two genes participate in a similar

genetic phenotype rather than necessarily share cellular func-

tions. Importantly, no deliberate biases toward genes previously

implicated in autism or biological functions related to nervous

system were used in building the network. The likelihood

network was assembled using a large set of known disease-
gene associations that were carefully curated for our previous

study (Feldman et al., 2008). This set contains 476 genes asso-

ciated with 132 different genetic diseases (see Experimental

Procedures).

Using the constructed network, we searched for functionally

connected clusters of human genes affected by de novo CNVs

(Figure 1). The genes within the observed CNV regions were first

mapped to the nodes corresponding to these genes in the

network (Figure 1B). Clusters of genes were assigned scores

based on the strength of their connections, and a greedy search

algorithm (see Experimental Procedures) was then used to find

high-scoring clusters of genes within the CNV regions (Fig-

ure 1C). In this search procedure genes from any CNV region

could be selected to be members of the growing cluster (Fig-

ure 1C), but to prevent large CNV regions from dominating clus-

ters, we allowed no more than one or two genes from a given

CNV to participate in a cluster (Figures 2A and 2B, respectively).
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Figure 2. Gene Clusters Found using NETBAG Analysis of De Novo CNV Regions Observed in Autistic Individuals

(A) The highest scoring cluster obtained using the search procedure with up to one gene per each CNV region.

(B) The cluster obtained using the search with up to two genes per region. In the figure, genes (nodes) with known functions in the brain and nervous systems are

colored in orange (see Table S2 for functional information about the genes forming the cluster). Node sizes represent the importance of each gene to the overall

cluster score. Edgewidths are proportional to the prior likelihood that the two corresponding genes contribute to a shared genetic phenotype. For clarity, we show

only edges corresponding to the two strongest connections for at least one node.

See also Figure S2, Table S1, and Table S2.
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A gene cluster was scored by considering the sum of log

likelihood-based edges between all genes within the cluster.

Such a scoring scheme is conceptually equivalent to calcu-

lating the expected likelihood that all genes within the cluster

will participate in the same genetic phenotype. To account

for the fact that functional interactions between genes in

a cluster are not independent, we employed a previously devel-

oped de-weighting heuristic (Lee et al., 2004) described in the

Experimental Procedures; similar results were obtained with or

without the deweighting procedure (see Table S1). To calculate

the p value for the resulting clusters, random events were

generated with the same gene count or alternatively with the

same genomic length, as in the observed de novo CNV

dataset. The greedy algorithm was then applied to search for

high-scoring clusters formed by genes from these random

events. p values were assigned to clusters based on the distri-

bution of scores in the randomized data clusters (see Experi-

mental Procedures).

We and others have previously used various network-based

methods to analyze genetic data from rare and common

diseases (Feldman et al., 2008; Franke et al., 2006; Iossifov

et al., 2008, 2009; Lango Allen et al., 2010; Raychaudhuri et al.,

2009). NETBAG differs from the previous approaches in several

important ways. Specifically, the underlying weighted network

does not represent a molecular interaction network or a set of

predefined functional pathways, but instead the prior likelihood

that any pair of human genes is involved in the same genetic

phenotype. NETBAG then defines a formal procedure for identi-

fying strongly connected clusters among a large set of geneti-

cally perturbed genes and evaluating the genome-wide cluster

significance. The relative importance of specific genes forming

a cluster is then evaluated based on the contribution of genes
900 Neuron 70, 898–907, June 9, 2011 ª2011 Elsevier Inc.
to the overall cluster score. We are currently working on making

the NETBAGmethod available as a web server; in the meantime,

we will be happy to share the developed methodology with any

interested parties.

Functional Gene Network Identified from Rare De Novo
CNVs
The NETBAG approach was directly applied to the experimental

CNV dataset described in the companion paper by Levy et al.

(2011; this issue of Neuron). This set contained 75 rare de novo

CNVs encompassing 746 unique human genes. For our analysis,

we combined all overlapping events into a single region and

removed all events that did not intersect any genes; we also

removed six very large CNV events (length >5 mb). As a result,

the final set used for our analysis contained 47 CNV regions

from affected individuals intersecting 433 genes. In addition,

Levy et al. (2011) also identified ultrarare CNVs inherited by

autistic subjects but not their siblings; inherited CNVs were clas-

sified as ultrarare if at least one of the corresponding genes was

not affected by any other event from the study. Applying the

same preprocessing procedure resulted in 156 CNV regions

with 419 genes associated with rare inherited events in autistic

children.

Using the data described above, we identified statistically

significant gene clusters affected by de novo CNV events asso-

ciated with autistic individuals. Significant clusters detected

using either one-gene-per-CNV (p value = 0.02) or the two-

genes-per-CNV (p value = 0.02) clustering are shown in Figure 2.

If genes forming the high scoring clusters weremasked, no other

significant clusters were detected in the data.

In contrast, no statistically significant clusters were obtained

using ultrarare inherited CNVs from affected individuals (the
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best cluster p value = 0.6) The absence of a significant cluster in

the ultrarare inherited data set, which had a comparable number

of genes to the de novo events, suggests that the inherited CNVs

contain a significantly smaller fraction of casual genes, i.e.,

genes associated with autistic phenotype. This conclusion is

also supported by the observation by Levy et al. (2011) that there

is less bias in transmission of ultrarare inherited events. In other

words, autistic children were almost as likely as their unaffected

siblings to inherit an ultrarare event. This is in sharp contrast to

the de novo events, which were nearly four times more frequent

in the autistic children (7.9% in autistic children versus 2.0% in

unaffected siblings).

The contribution of each gene to the cluster score, i.e., its

functional connection to other cluster genes, is not uniform. To

capture each gene’s contribution to the cluster score we per-

formed Markov Chain Monte Carlo (MCMC) simulations,

sampling clusters based on their scores. The size of each gene

(node) in Figure 2 is proportional to the each gene’s membership

in high-scoring clusters during the sampling simulations (see

Experimental Procedures, Supplemental Experimental Proce-

dures). Similar node sizes were also obtained based on the

average connection strength from each gene to the other genes

in the cluster (Pearson’s r = 0.8, p value = 4*10�11).

Interestingly, we found that genes affected by de novo CNVs

observed in females are significantly more important for the

overall cluster score than genes affected by CNVs in males,

i.e., female genes have stronger average connections with other

genes from the identified network (see Figure S2; one-tail Mann-

Whitney test, female >male, p value = 0.013). This observation is

illuminating because one of the striking phenotypic characteris-

tics of autism is the male-to-female incidence ratio of more than

5:1 for high-functioning ASD (Newschaffer et al., 2007). It has

been previously suggested (Zhao et al., 2007) that stronger

genetic perturbations are required, on average, to trigger an

autistic phenotype in females than males due to currently

unknown compensatory mechanisms. Two mechanisms may

lead to stronger perturbations in females: CNVs encompassing

a larger number of genes that are associated with ASD and

CNVs intersecting individual genes that produce a more delete-

rious impact when disrupted. The analysis of de novo events in

affected individuals lends support to both of these mechanisms:

the CNVs in females are indeed significantly larger (with median

of 10 genes per CNV in females, three genes per CNV in males,

two-tail Mann Whitney, p value = 0.02), and genes derived

from female CNVs are more functionally important for the

network shown in Figure 2. Using simulations of random CNVs

we also confirmed that the difference in the relative importance

of female versus male nodes is unlikely (p = 0.024) to be a simple

consequence of the larger CNV sizes in females (see Supple-

mental Information; Figure S2C). We believe that both of the

aforementioned mechanisms are at play. Indeed, it would be

surprising that stronger perturbation can be inflicted exclusively

by larger CNVs and not disruption of high impact genes, and vice

versa.

Functional Characterization of the Identified Network
Analysis of the established annotation resources, such as Swiss-

Prot (UniProt Consortium, 2007), GeneCards (www.genecards.
org), WikiGenes (www.wikigenes.org), and IHOP (Hoffmann

and Valencia, 2004), suggests that a significant fraction of genes

in the identified network either play a well-defined functional

role in the brain or have been previously implicated in neurode-

generative and psychiatric disorders. Only �25% (54 of a

randomly selected 214) of all genes within the de novo CNV

regions have been previously associated with brain-related

phenotypes. However, when we consider genes in the identified

clusters this proportion rises drastically (p value < 10�3), to

�67% (Figure 2A; 30 out of 45) for the one-gene-per-CNV cluster

or �52% (Figure 2B; 38 out of 72) for the two-genes-per-

CNV cluster (see Table S2 for functional description of cluster

genes).

To characterize in more detail the specific biological

processes related to the cluster in Figure 2A, we investigated

the strength of functional interactions between the cluster genes

and various gene ontology (GO) categories (Ashburner et al.,

2000). GO categories represent a curated set of functionally

related genes described by a controlled vocabulary. For human

genes in each of 1454GOcategories we calculated their average

log likelihood interaction score (using the background network)

with the genes in the identified cluster (Figure 2). TheGO-specific

significance of these interaction scores was calculated by

comparison with scores of randomly generated CNV events

with the same gene count at in real data by Levy et al. (2011).

A false discovery rate (FDR) procedure was used to correct for

multiple hypothesis testing (see Experimental Procedures). The

25 GO categories with lowest Q values, indicating the highest

connection significance to the autism associated cluster, are

shown in Table 1 (see Table S3 for other significant GO cate-

gories). These GO categories are primarily related to actin

network dynamics and reorganization, synaptogenesis, axono-

genesis, cell-cell adhesion, small GTPase signaling, and neurite

development. Consequently, the identified functional network is

associated with a diverse collection of molecular and cellular

processes essential for proper synaptogenesis and axon guid-

ance.We note that is it not possible to obtain the same functional

results by a statistical analysis of significantly overrepresented

GO terms for all 433 gene within the de novo CNVs from affected

individuals (see Supplemental Experimental Procedures for

details). The significant GO terms presented in Table 1 specifi-

cally describe the functional connection of the network in

Figure 2.

Using the same methodology, we found that the cluster in Fig-

ure 2A is strongly related to the set of genes previously impli-

cated in autism (p value = 0.001; see Supplemental Experimental

Procedures) and genes associated with intellectual disability

phenotypes (p value = 0.017). The collections of genes respon-

sible for these phenotypes were manually compiled recently by

Pinto et al. (2010) through an extensive review of the literature

and available databases. In spite of strong functional connec-

tions, the overlap between genes in the aforementioned sets

and the genes identified in our analysis is relatively small

(�3%). Thus, our study significantly expands the collection of

genes implicated in ASD. The cluster genes are also strongly

connected (p value = 0.013) to proteins identified experimentally

by recent proteomic profiling of postsynaptic density (PSD) from

human neocortex (Bayés et al., 2011).
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Table 1. Gene Ontology (GO) Terms Highly Connected to the

Functional Network in Figure 2A

Gene Ontology Term GO Category Q Value

GO:0007015: actin filament

organization

Biological process <0.01

GO:0030424: axon Cellular component <0.01

GO:0048469: cell maturation Biological process <0.01

GO:0007611: learning and

or memory

Biological process <0.01

GO:0044456: synapse part Cellular component <0.01

GO:0045202: synapse Cellular component <0.01

GO:0007163: establishment and

or maintenance of cell polarity

Biological process 0.01

GO:0045216: intercellular junction

assembly and maintenance

Biological process 0.01

GO:0019201: nucleotide kinase

activity

Molecular function 0.01

GO:0005912: adherens junction Cellular component 0.01

GO:0007409: axonogenesis Biological process 0.01

GO:0016323: basolateral plasma

membrane

Cellular component 0.01

GO:0030041: actin filament

polymerization

Biological process 0.01

GO:0051258: protein polymerization Biological process 0.01

GO:0021700: developmental

maturation

Biological process 0.01

GO:0030863: cortical cytoskeleton Cellular component 0.01

GO:0000904: cellular morphogenesis

during differentiation

Biological process 0.01

GO:0005925: focal adhesion Cellular component 0.01

GO:0030427: site of polarized growth Cellular component 0.01

GO:0032271: regulation of protein

polymerization

Biological process 0.01

GO:0031175: neurite development Biological process 0.01

GO:0048666: neuron development Biological process 0.01

GO:0030055: cell matrix junction Cellular component 0.01

GO:0030832: regulation of actin

filament length

Biological process 0.01

GO:0030036: actin cytoskeleton

organization and biogenesis

Biological process 0.01

We defined a score that reflects the degree to which the network genes

interact with gene sets assigned to various GO categories (1454 in total).

For every GO category, a background distribution was built by generating

clusters from randomly chosen CNV regions with the same gene count as

observed in real data by Levy et al. (2011). These distributions were used

to derive false discovery rate (FDR) corrected Q values accounting for the

multiple hypothesis tests (one test for every GO gene set; see Experi-

mental Procedures). See also Table S3.
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DISCUSSION

At the core of the processes listed in Table 1 is the development

and maturation of synaptic contacts in the brain. The functional

relationships between proteins in the identified cluster can be

better appreciated if considered in the context ofmolecular inter-
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actions involved in formation and maturation of the excitatory

(glutamatergic) synapse (Figure 3). The excitatory synaptic

connections are formed between axons and dendritic spines,

which are complex and dynamic postsynaptic structures con-

taining thousands of different proteins (Alvarez and Sabatini,

2007; Tada and Sheng, 2006). The formation, maturation and

elimination of dendritic spines lie at the core of synaptic trans-

mission and memory formation (Roberts et al., 2010; Yang

et al., 2009). In Figure 3 the genes that are members of the iden-

tified network are shown in yellow, other functionally related

genes within rare de novo CNV regions from Levy et al. (2011)

are in blue and genes previously implicated or discussed in the

context of autism are highlighted using orange borders. Although

the picture shows a dense and interconnected web of molecular

interactions, the processes depicted in the figure can be under-

stood in terms of several signaling and structural pathways.

Many of these pathways ultimately converge on the regulation

of the growth and branching of the actin filament network, which

is essential for spine structural remodeling and morphogenesis.

The initial contacts between axons and dendrites are medi-

ated by specific adhesion-related proteins, such as neurexin

and neuroligin (e.g., NRXN1 and NLGN3, genes perturbed by

rare de novo CNVs associated with ASD are underlined here

and below) (Südhof, 2008). On the postsynaptic side of an excit-

atory synapse, the initial axon-dendrite contacts ultimately

develop into a complex and dense structure, the postsynaptic

density (PSD), dominated by several types of glutamate recep-

tors (such as AMPA and NMDA), various scaffolding proteins

(DLG4/PSD95, DLG2, SHANK2/3, SynGAP1, DLGAP2) and traf-

ficking/signaling proteins (CTNND2). In total, the PSD contains

many hundreds of distinct proteins (Bayés et al., 2011; Sheng

and Hoogenraad, 2007). Information for activity-dependent

regulation of spine morphology is passed through an interme-

diate level of signaling protein, such as Rho family (Linseman

and Loucks, 2008) of small GTPases (RhoA/B, Cdc42, Rac1) to

downstream targets (LIMK1 and PAK1/2/3) connected to

proteins modifying morphology of the actin network (cofilin and

Arp2/3) (Blanchoin et al., 2000). The activity of the GTPases is

regulated pre- or postsynaptically by many guanine exchange

factors (GEFs), GDP dissociation inhibitors (GDIs, such as

GDI1) and GTP-activating proteins (GAPs). Many other proteins

shown in Figure 3, such as FLNA, CTNNA3, DOCK8, SPTAN1,

CYFIP1, either bind directly to the actin network or mediate inter-

action of actin filaments with other proteins.

The WNT signaling pathway plays a crucial role in diverse

processes associated with formation of neural circuits (Salinas

and Zou, 2008). This pathway is also known to be directly

involved in the regulation of dendrite morphogenesis (Rosso

et al., 2005; Salinas et al., 1994). WNT signaling is accomplished

through the canonical branch (DVL,AXIN1, beta-catenin) and the

noncanonical branch (DVL1/2/3, Rac1, and JNK); both of these

pathway branches converge on regulation of actin network

morphogenesis. Similar to WNT, the reelin signaling also plays

a prominent role in the context of autism phenotype and specif-

ically dendritic spine morphogenesis (Fatemi et al., 2005; Niu

et al., 2008). Signaling by secreted extracellular RELN protein

acts though VLDR and Apoer2 receptors and the PI3K/Akt

pathway (Jossin and Goffinet, 2007) regulating the mammalian



Figure 3. Genes Associated with the Morphogenesis of Dendritic Spines

Dendritic spines are dynamically forming protrusions from a neuron’s dendrite which mediate excitatory connection to axons and determine synaptic strength.

The proteins shown in the figure play crucial roles in formation of physical contacts between axons and dendrites, organization of postsynaptic density (PSD), and

signaling processes controlling spine morphology. Many of the signaling pathways ultimately converge on the regulation of the growth and branching of the actin

filament network, which is essential for spine structural remodeling. The proteins encoded by genes from the identified functional cluster (Figure 2) are shown in

yellow, other genes hit by de novo CNV from Levy et al. (2011), in blue, and genes previously implicated or discussed in the context of autism are highlighted using

orange borders. See also Table S4.
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target of rapamycin (mTOR) pathway (Kumar et al., 2005; Shaw

and Cantley, 2006). Another important pathway converging on

mTOR involves MAPK3/ERK, which can be activated by Ras

and NF1. mTOR integrates various inputs from upstream

growth-related pathways, and is also known to regulate dendrite

morphogenesis (Tavazoie et al., 2005).

Although we discussed proteins in the context of dendritic

spine development (Figure 3 and text above), many of the afore-

mentioned proteins also participate in diverse cellular processes

and are reused in the context of axon guidance and neuron

motility (Shen and Cowan, 2010). Such recycling of proteins is

natural because actin network dynamics are essential for such

processes as growth of axonal filopodia, which are used in

searching for growth cone guidance cues (Tessier-Lavigne and

Goodman, 1996). The presence of DCC protein in the identified

network (Figures 2 and 3), also suggests an important role of per-

turbed axonal guidance in autism. AlthoughDCC is also involved

in dendrite development (Suli et al., 2006), this receptor and its

signaling protein, netrin, are primarily essential for guiding axons

to their final destinations (Tessier-Lavigne and Goodman, 1996).
Several signaling pathways highlighted in Figure 3, such as the

WNT and reelin pathways, also play prominent roles in neuron

motility (Reiner and Sapir, 2005; Salinas and Zou, 2008). In addi-

tion, several specific proteins, such as PAKs and LIMK, which

regulate the dynamics of actin network, are reused in axonal

morphogenesis. Consequently, malfunction of many proteins

shown in Figure 3 may influence autistic phenotypes through

their role in either dendrite or axon signaling, or possibly a combi-

nation of these processes.

Considering the genes hit by rare de novo variants from the

perspective of the functional molecular network (Figure 3)

allowed us to investigate the likely morphological consequences

ofsomeCNVs.There isgrowingevidence thatchanges indendritic

spine morphology contribute to a number of neurological disor-

ders (Halpain et al., 2005). A decrease in the density of dendritic

spines in regions of the cerebral cortex has been linked to schizo-

phrenia (Blanpied and Ehlers, 2004; Garey et al., 1998; Glantz

and Lewis, 2000). On the other hand, an increase in spine size or

density has been connected to Fragile X syndrome, a disorder

frequently associated with autism (Fiala et al., 2002; Kaufmann
Neuron 70, 898–907, June 9, 2011 ª2011 Elsevier Inc. 903
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and Moser, 2000). Following the logic that CNV deletions should

decrease while duplications increase the dosage of the affected

genes, we can infer—based on the structure and regulatory logic

of the functional network in Figure 3—the morphological effects

of 13 gene perturbations on dendritic spines. Specifically, we

found that in 11 out of 13 cases (�85%) the gene perturbations

caused by the observed CNV events should increase either

dendritic spine growth or their density (see Table S4). This result

is consistent with recent findings that autistic individuals have

increased spine density in portions of their cerebral cortex (Hutsler

and Zhang, 2010; Woolfrey et al., 2009) and possibly a local brain

overconnectivity (Scott-Van Zeeland et al., 2010).

Overall, the results of this study, the first to our knowledge,

demonstrate that autism-associated rare de novo CNVs,

observed in an unbiased genome-wide study, form a large

and statistically significant functional network responsible for

synaptogenesis, axon guidance, and related molecular pro-

cesses. Therefore, our analysis strongly supports the hypothesis

that autism is primarily a disease of synaptic and neuronal

connectivity malfunction (Zoghbi, 2003). The identified functional

network also reveals a striking genetic complexity of autism. The

genetic events we observe affect the whole arc of molecular

processes essential for proper synapse formation and function.

Similar genetic complexity is already apparent in many cancers

(Cancer Genome Atlas Research Network, 2008; Wood et al.,

2007) and—as we and others believe—will be a hallmark of

many other common human phenotypes and maladies (Wang

et al., 2010). In spite of the observed complexity, our study

provides an important proof of the principle that underlying func-

tional networks responsible for common phenotypes can be

identified by an unbiased analysis of multiple rare genetic pertur-

bations from a large collection of affected individuals.

The functional network presented in Figure 3 contains approx-

imately 70 genes, with about 40% of them perturbed by rare de

novo CNVs observed by Levy et al. (2011). As more genetic data

are analyzed it is likely that the network will grow in size and

significance. Considering that up to a thousand (Sheng and Hoo-

genraad, 2007) distinct proteins are associated with postsyn-

aptic density or that hundreds of different GAPs/GEFs modify

activity of Rho GTPases that are associated with actin network

remodeling, it is likely that many hundreds of genes could ulti-

mately contribute to the autistic phenotype. This estimate, based

on the functional network, is consistent with independent esti-

mates based on recurrent mutations and the overall incidence

of autism in the human population (Zhao et al., 2007; Levy

et al., 2011). Deleterious variants in different genes contributing

to autistic phenotype will almost certainly have different pene-

trance and vulnerabilities. The identification of the complete

set of genes responsible for ASD and understanding their

respective contributions to the phenotype will require analyses

of next generation sequencing data coupled with investigation

of underlying molecular networks.
EXPERIMENTAL PROCEDURES

Copy Number Variation (CNV) Data Set

In our analysis, we used the CNV data set obtained in a companion study by

Levy et al. (2011). The data set contained 75 rare de novo CNV events from
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autistic children. Six very large CNV events, spanning more than 5 mb each,

were not considered in our analysis. The initial CNV dataset contained several

overlapping events, including a set of 10 events all within the region 16p11.2.

Any overlapping CNVs were collapsed into single events to avoid double

counting of genes. We ignored all CNV events that did not contain any anno-

tated human gene based on the NCBI genome build 36. After aforementioned

preprocessing steps, our final CNV set from autistic children contained 47 loci

in total affecting 433 human genes; the average number of genes within each

de novo CNV region was�9, with the median of three genes per regions. Levy

et al. (2011) also identified 157 ultrarare inherited CNVs transmitted between

parents and autistic children. Inherited CNVs were classified as ultrarare if

the genes within these events were not affected by any other inherited events

in the study. We applied the same preprocessing steps to these inherited

CNVs, resulting in 156 regions affecting 418 genes.
Building the Background Likelihood Network

To perform the NETBAG analysis, we built a background network connecting

all pairs of human genes. Every gene pair in this network was assigned a score

proportional to the log of the ratio of the likelihood that the two genes partici-

pate in the same genetic phenotype to the likelihood that they do not (see

Supplemental Experimental Procedures). Importantly, although similar in spirit

to integrative methods that have been used previously to build functional

networks in several model species (Lee et al., 2004, 2008), the edges in our

network represent the likelihood to participate in the same genetic phenotype

rather than share a functional and molecular interaction.

The likelihood network was build using, as a positive gold standard, the

carefully curated set of human genes compiled recently by Feldman et al.

(2008). This set contains 476 human genes associated with 132 different

genetic phenotypes. As a negative gold standard we used a set of randomly

selected pairs of human genes that are not known to be associated with iden-

tical diseases phenotypes. Importantly, no genes previously implicated in ASD

or any biologically related functions were used in the network construction.

The likelihood score was derived based on naive Bayesian integration of

various descriptors of proteins function: shared GO annotations, participation

in the same KEGG pathways, shared protein domains in InterPro, direct

protein-proteins interactions and shared interaction partners from multiple

databases (BIND, BioGRID, DIP, HPRD, InNetDB, IntAct, BiGG, MINT, and

MIPS), sequence homology between the gene pair calculated using BLAST

(Altschul et al., 1997), and two measures of similarity in coevolutionary

patterns: phylogenetic profile similarity and chromosomal coclustering across

genomes (Chen and Vitkup, 2006). We cross-validated the quality of the back-

ground network by showing that it can be successfully used to prioritize (rank)

genes, located within a chromosomal region, across a variety of genetic

phenotypes (see Supplemental Experimental Procedures for details).
Search for High-Scoring Clusters Affected by CNVs

To score a cluster of genes in the network (Figure 1), we combined the scores

for all gene pairs forming the cluster. The direct multiplication of the corre-

sponding likelihoods (network edges) is conceptually equivalent to assuming

that all connections within the cluster are independent; we refer to this proce-

dure as the naive scoring scheme. Second, we applied a simple deweighting

scheme used previously for functional data integration (Lee et al., 2004). For

each gene forming the cluster the deweighting scheme scores the strongest

connection in full, and then decreases the other connections in order of their

strength in a linear fashion (see Supplemental Experimental Procedures).

Effectively, the deweighting scheme gives more weight to strongest gene-

gene connections within the cluster. The detected functional clusters were

significant under both scoring schemes.

A greedy growth algorithm was used to find strongly connected clusters of

genes located within CNV regions (Figure 1). Specifically, the search algorithm

was started from every possible gene in CNV regions, then the gene with the

strongest connection to the first gene was added. At all subsequent iterations,

genes located within CNV regions that most increased the cluster score were

added. Only one (results in Figure 2A) or two (Figure 2B) genes per each CNV

region were allowed in the growing cluster. This growth procedure was run

until no further genes could be added. For each cluster size, clusters obtained
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by starting with each gene within CNV regions were compared and the cluster

with the highest score was selected.

Evaluating Significance of Cluster Scores

Wefirst determined the p value for the best cluster at each cluster size; we refer

to this as the local p value. Local p values were calculated based on rerunning

the greedy search algorithm using random human genome regions identical

(either in length or gene number) to those observed by Levy et al. (2011).

Second, to determine the most significant cluster across sizes, we compared

the lowest local p value obtained from the real data, to the distribution of lowest

local p values obtained in the 10,000 trails from the randomized regions. Effec-

tively, this allowed us to assign a p value to our local p value; we refer to this as

the global p value. The global p value is more stringent because it accounts for

multiple hypotheses testing, arising due to different cluster sizes; in our manu-

script we refer to global p value simply as p value. In the aforementioned calcu-

lation of local and global p values, we used two alternative randomization

procedures for human genomic regions: we either preserved the genomic

size of CNVs or the gene counts to the values observed in the real data. All

randomized regions were generated using the NCBI human genome build

36 (hg18). The functional cluster identified in our work was significant under

both randomization schemes (preserving length of CNVs or gene counts)

and cluster scoring methods (naive and deweighted). The p values for different

randomization procedures are given in Table S1.

In addition to the randomization of genomic regionswewanted to ensure that

our results were not due to some general topological features of the back-

ground network. To explore this possibility, we randomly shuffled the back-

ground network while preserving the distribution of connection strengths for

each gene (see Supplemental Experimental Procedures). We then repeated

the NETBAG search using the de novo CNVs from affected children. This

search using the shuffled network identified no significant clusters orGO terms.

Analysis of Genes Contribution to Cluster Score

Contributions of different genes to the score of the identified functional cluster

(Figure 2) vary substantially. To capture that, we devised a formal method to

assign weights to individual genes reflecting their contribution to high scoring

clusters. Themethod is based on two distributions over clusters: p(C), in which

clusters with high scores are assigned a high probability, and a uniform distri-

bution, pu(C), in which all clusters are equally likely (See Supplemental Exper-

imental Procedures). Each individual gene was then given a score equal to the

ratio of the number of clusters that contain the gene sampled from p(C) to the

number sampled from pu(C). As a result, the genes whichweremore frequently

included in high-scoring clusters were assigned higher ratios. We used

Markov-Chain Monte Carlo (MCMC) to sample 5 million clusters from each

of the two distributions.

Calculation of Functional Relationships between the Cluster

and Various GO Categories

To characterize the identified cluster we investigated its interactions with

a collection of a priori defined functional sets of human genes. For this

purpose, we utilized the 1454 gene sets corresponding to the gene ontology

(GO) categories used in the MSigDB database (Subramanian et al., 2005).

Using the background likelihood network, we calculated, for each gene set,

its average interaction to the identified cluster shown in Figure 2. To determine

the significance of the calculated interaction scores we built gene set-specific

background distributions by generating random clusters from the randomized

genomic regions with the same gene count as in Levy et al. (2011). We used the

background distribution to assign an empirical p-value for every gene set, and

then applied the FDR procedure to address the multiple hypotheses involved

in testing all gene sets within the collection (see Supplemental Experimental

Procedures).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, four tables, and Supplemental
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Südhof, T.C. (2008). Neuroligins and neurexins link synaptic function to cogni-

tive disease. Nature 455, 903–911.

Suli, A., Mortimer, N., Shepherd, I., and Chien, C.B. (2006). Netrin/DCC

signaling controls contralateral dendrites of octavolateralis efferent neurons.

J. Neurosci. 26, 13328–13337.

Tada, T., and Sheng, M. (2006). Molecular mechanisms of dendritic spine

morphogenesis. Curr. Opin. Neurobiol. 16, 95–101.



Neuron

Rare CNV Variants in Autism Perturb Synaptogenesis
Tavazoie, S.F., Alvarez, V.A., Ridenour, D.A., Kwiatkowski, D.J., and Sabatini,

B.L. (2005). Regulation of neuronal morphology and function by the tumor

suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734.

Tessier-Lavigne, M., and Goodman, C.S. (1996). The molecular biology of

axon guidance. Science 274, 1123–1133.

UniProt Consortium. (2007). The Universal Protein Resource (UniProt). Nucleic

Acids Res. 35 (Database issue), D193–D197.

Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J.T., Abrahams, B.S.,

Salyakina, D., Imielinski, M., Bradfield, J.P., Sleiman, P.M., et al. (2009).

Common genetic variants on 5p14.1 associate with autism spectrum disor-

ders. Nature 459, 528–533.

Wang, K., Bucan, M., Grant, S.F., Schellenberg, G., and Hakonarson, H.

(2010). Strategies for genetic studies of complex diseases. Cell 142,

351–353, author reply 353–355.

Weiss, L.A., Arking, D.E., Daly, M.J., and Chakravarti, A.; Gene Discovery

Project of Johns Hopkins & the Autism Consortium. (2009). A genome-wide
linkage and association scan reveals novel loci for autism. Nature 461,

802–808.

Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., Leary, R.J., Shen,
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